GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: src/ell/cubicEll.c Lines: 0 59 0.0 %
Date: 2017-05-26 Branches: 0 20 0.0 %

Line Branch Exec Source
1
/*
2
  Teem: Tools to process and visualize scientific data and images             .
3
  Copyright (C) 2013, 2012, 2011, 2010, 2009  University of Chicago
4
  Copyright (C) 2008, 2007, 2006, 2005  Gordon Kindlmann
5
  Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998  University of Utah
6
7
  This library is free software; you can redistribute it and/or
8
  modify it under the terms of the GNU Lesser General Public License
9
  (LGPL) as published by the Free Software Foundation; either
10
  version 2.1 of the License, or (at your option) any later version.
11
  The terms of redistributing and/or modifying this software also
12
  include exceptions to the LGPL that facilitate static linking.
13
14
  This library is distributed in the hope that it will be useful,
15
  but WITHOUT ANY WARRANTY; without even the implied warranty of
16
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
  Lesser General Public License for more details.
18
19
  You should have received a copy of the GNU Lesser General Public License
20
  along with this library; if not, write to Free Software Foundation, Inc.,
21
  51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
22
*/
23
24
25
#include "ell.h"
26
27
28
29
/*
30
******** ell_cubic():
31
**
32
** finds real roots of x^3 + A*x^2 + B*x + C.
33
**
34
** records the found real roots in the given root array.
35
**
36
** returns information about the roots according to ellCubicRoot enum,
37
** the set the following values in given root[] array:
38
**   ell_cubic_root_single: root[0], root[1] == root[2] == AIR_NAN
39
**   ell_cubic_root_triple: root[0] == root[1] == root[2]
40
**   ell_cubic_root_single_double: single root[0]; double root[1] == root[2]
41
**                              or double root[0] == root[1], single root[2]
42
**   ell_cubic_root_three: root[0], root[1], root[2]
43
**
44
** The values stored in root[] are, in a change from the past, sorted
45
** in descending order!  No need to sort them any more!
46
**
47
** This does NOT use biff
48
*/
49
int
50
ell_cubic(double root[3], double A, double B, double C, int newton) {
51
  char me[]="ell_cubic";
52
  double epsilon = 1.0E-11, AA, Q, R, QQQ, D, sqrt_D, der,
53
    u, v, x, theta, t, sub;
54
55
  /*
56
  printf("%s: A B C = %g %g %g\n", me, A, B, C);
57
  */
58
  sub = A/3.0;
59
  AA = A*A;
60
  Q = (AA/3.0 - B)/3.0;
61
  R = (-2.0*A*AA/27.0 + A*B/3.0 - C)/2.0;
62
  QQQ = Q*Q*Q;
63
  D = R*R - QQQ;
64
  /*
65
  printf(" R = %15.30f\n Q = %15.30f\n QQQ = %15.30f\n D = %15.30f\n",
66
         R, Q, QQQ, D);
67
  */
68
  if (D < -epsilon) {
69
    /* three distinct roots- this is the most common case, it has
70
       been tested the most, its code should go first */
71
    theta = acos(R/sqrt(QQQ))/3.0;
72
    t = 2*sqrt(Q);
73
    /* yes, these are sorted, because the C definition of acos says
74
       that it returns values in in [0, pi] */
75
    root[0] = t*cos(theta) - sub;
76
    root[1] = t*cos(theta - 2*AIR_PI/3.0) - sub;
77
    root[2] = t*cos(theta + 2*AIR_PI/3.0) - sub;
78
    /*
79
    if (!AIR_EXISTS(root[0])) {
80
      fprintf(stderr, "%s: %g %g %g --> nan!!!\n", me, A, B, C);
81
    }
82
    */
83
    return ell_cubic_root_three;
84
  }
85
  else if (D > epsilon) {
86
    double nr, fnr;
87
    /* one real solution, except maybe also a "rescued" double root */
88
    sqrt_D = sqrt(D);
89
    u = airCbrt(sqrt_D+R);
90
    v = -airCbrt(sqrt_D-R);
91
    x = u+v - sub;
92
    if (!newton) {
93
      root[0] = x;
94
      root[1] = root[2] = AIR_NAN;
95
      return ell_cubic_root_single;
96
    }
97
98
    /* else refine x, the known root, with newton-raphson, so as to get the
99
       most accurate possible calculation for nr, the possible new root */
100
    x -= (der = (3*x + 2*A)*x + B, ((x/der + A/der)*x + B/der)*x + C/der);
101
    x -= (der = (3*x + 2*A)*x + B, ((x/der + A/der)*x + B/der)*x + C/der);
102
    x -= (der = (3*x + 2*A)*x + B, ((x/der + A/der)*x + B/der)*x + C/der);
103
    x -= (der = (3*x + 2*A)*x + B, ((x/der + A/der)*x + B/der)*x + C/der);
104
    x -= (der = (3*x + 2*A)*x + B, ((x/der + A/der)*x + B/der)*x + C/der);
105
    x -= (der = (3*x + 2*A)*x + B, ((x/der + A/der)*x + B/der)*x + C/der);
106
    nr = -(A + x)/2.0;
107
    fnr = ((nr + A)*nr + B)*nr + C;  /* the polynomial evaluated at nr */
108
    /*
109
    if (ell_debug) {
110
      fprintf(stderr, "%s: root = %g -> %g, nr=% 20.15f\n"
111
              "   fnr=% 20.15f\n", me,
112
              x, (((x + A)*x + B)*x + C), nr, fnr);
113
    }
114
    */
115
    if (fnr < -epsilon || fnr > epsilon) {
116
      root[0] = x;
117
      root[1] = root[2] = AIR_NAN;
118
      return ell_cubic_root_single;
119
    }
120
    else {
121
      if (ell_debug) {
122
        fprintf(stderr, "%s: rescued double root:% 20.15f\n", me, nr);
123
      }
124
      if (x > nr) {
125
        root[0] = x;
126
        root[1] = nr;
127
        root[2] = nr;
128
      } else {
129
        root[0] = nr;
130
        root[1] = nr;
131
        root[2] = x;
132
      }
133
      return ell_cubic_root_single_double;
134
    }
135
  }
136
  else {
137
    /* else D is in the interval [-epsilon, +epsilon] */
138
    if (R < -epsilon || epsilon < R) {
139
      /* one double root and one single root */
140
      u = airCbrt(R);
141
      if (u > 0) {
142
        root[0] = 2*u - sub;
143
        root[1] = -u - sub;
144
        root[2] = -u - sub;
145
      } else {
146
        root[0] = -u - sub;
147
        root[1] = -u - sub;
148
        root[2] = 2*u - sub;
149
      }
150
      return ell_cubic_root_single_double;
151
    }
152
    else {
153
      /* one triple root */
154
      root[0] = root[1] = root[2] = -sub;
155
      return ell_cubic_root_triple;
156
    }
157
  }
158
  /* shouldn't ever get here */
159
  /* return ell_cubic_root_unknown; */
160
}
161
162
163
164