1 |
|
|
/* |
2 |
|
|
Teem: Tools to process and visualize scientific data and images . |
3 |
|
|
Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 |
|
|
Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 |
|
|
Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 |
|
|
|
7 |
|
|
This library is free software; you can redistribute it and/or |
8 |
|
|
modify it under the terms of the GNU Lesser General Public License |
9 |
|
|
(LGPL) as published by the Free Software Foundation; either |
10 |
|
|
version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
The terms of redistributing and/or modifying this software also |
12 |
|
|
include exceptions to the LGPL that facilitate static linking. |
13 |
|
|
|
14 |
|
|
This library is distributed in the hope that it will be useful, |
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 |
|
|
Lesser General Public License for more details. |
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU Lesser General Public License |
20 |
|
|
along with this library; if not, write to Free Software Foundation, Inc., |
21 |
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "ell.h" |
26 |
|
|
|
27 |
|
|
/* lop A |
28 |
|
|
fprintf(stderr, "_ellAlign3: ----------\n"); |
29 |
|
|
fprintf(stderr, "_ellAlign3: v0 = %g %g %g\n", (v+0)[0], (v+0)[1], (v+0)[2]); |
30 |
|
|
fprintf(stderr, "_ellAlign3: v3 = %g %g %g\n", (v+3)[0], (v+3)[1], (v+3)[2]); |
31 |
|
|
fprintf(stderr, "_ellAlign3: v6 = %g %g %g\n", (v+6)[0], (v+6)[1], (v+6)[2]); |
32 |
|
|
fprintf(stderr, "_ellAlign3: d = %g %g %g -> %d %d %d\n", |
33 |
|
|
d0, d1, d2, Mi, ai, bi); |
34 |
|
|
fprintf(stderr, "_ellAlign3: pre dot signs (03, 06, 36): %d %d %d\n", |
35 |
|
|
airSgn(ELL_3V_DOT(v+0, v+3)), |
36 |
|
|
airSgn(ELL_3V_DOT(v+0, v+6)), |
37 |
|
|
airSgn(ELL_3V_DOT(v+3, v+6))); |
38 |
|
|
*/ |
39 |
|
|
|
40 |
|
|
/* lop B |
41 |
|
|
fprintf(stderr, "_ellAlign3: v0 = %g %g %g\n", (v+0)[0], (v+0)[1], (v+0)[2]); |
42 |
|
|
fprintf(stderr, "_ellAlign3: v3 = %g %g %g\n", (v+3)[0], (v+3)[1], (v+3)[2]); |
43 |
|
|
fprintf(stderr, "_ellAlign3: v6 = %g %g %g\n", (v+6)[0], (v+6)[1], (v+6)[2]); |
44 |
|
|
fprintf(stderr, "_ellAlign3: post dot signs %d %d %d\n", |
45 |
|
|
airSgn(ELL_3V_DOT(v+0, v+3)), |
46 |
|
|
airSgn(ELL_3V_DOT(v+0, v+6)), |
47 |
|
|
airSgn(ELL_3V_DOT(v+3, v+6))); |
48 |
|
|
if (airSgn(ELL_3V_DOT(v+0, v+3)) < 0 |
49 |
|
|
|| airSgn(ELL_3V_DOT(v+0, v+6)) < 0 |
50 |
|
|
|| airSgn(ELL_3V_DOT(v+3, v+6)) < 0) { |
51 |
|
|
exit(1); |
52 |
|
|
} |
53 |
|
|
*/ |
54 |
|
|
|
55 |
|
|
/* |
56 |
|
|
******** ell_quadratic() |
57 |
|
|
** |
58 |
|
|
** finds real roots of A*x^2 + B*x + C. |
59 |
|
|
** |
60 |
|
|
** records the found roots in the given root array, and returns a |
61 |
|
|
** value from the ell_quadratic_root* enum: |
62 |
|
|
** |
63 |
|
|
** ell_quadratic_root_two: |
64 |
|
|
** two distinct roots root[0] > root[1] |
65 |
|
|
** ell_quadratic_root_complex: |
66 |
|
|
** two complex conjugate roots at root[0] +/- i*root[1] |
67 |
|
|
** ell_quadratic_root_double: |
68 |
|
|
** a repeated root root[0] == root[1] |
69 |
|
|
** |
70 |
|
|
** HEY simple as this code may seem, it has definitely numerical |
71 |
|
|
** issues that have not been explored or fixed, such as what if A is |
72 |
|
|
** near 0. Also correctly handling the transition from double root to |
73 |
|
|
** complex roots needs to be re-thought, as well as this issue: |
74 |
|
|
** http://people.csail.mit.edu/bkph/articles/Quadratics.pdf Should |
75 |
|
|
** also understand http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf |
76 |
|
|
** |
77 |
|
|
** This does NOT use biff |
78 |
|
|
*/ |
79 |
|
|
int |
80 |
|
|
ell_quadratic(double root[2], double A, double B, double C) { |
81 |
|
|
/* static const char me[]="ell_quadratic"; */ |
82 |
|
|
int ret; |
83 |
|
|
double disc, rd, tmp, eps=1.0E-12; |
84 |
|
|
|
85 |
|
|
disc = B*B - 4*A*C; |
86 |
|
|
if (disc > 0) { |
87 |
|
|
rd = sqrt(disc); |
88 |
|
|
root[0] = (-B + rd)/(2*A); |
89 |
|
|
root[1] = (-B - rd)/(2*A); |
90 |
|
|
if (root[0] < root[1]) { |
91 |
|
|
ELL_SWAP2(root[0], root[1], tmp); |
92 |
|
|
} |
93 |
|
|
ret = ell_quadratic_root_two; |
94 |
|
|
} else if (disc < -eps) { |
95 |
|
|
root[0] = -B/(2*A); |
96 |
|
|
root[1] = sqrt(-disc)/(2*A); |
97 |
|
|
ret = ell_quadratic_root_complex; |
98 |
|
|
} else { |
99 |
|
|
/* 0 == disc or only *very slightly* negative */ |
100 |
|
|
root[0] = root[1] = -B/(2*A); |
101 |
|
|
ret = ell_quadratic_root_double; |
102 |
|
|
} |
103 |
|
|
return ret; |
104 |
|
|
} |
105 |
|
|
|
106 |
|
|
int |
107 |
|
|
ell_2m_eigenvalues_d(double eval[2], const double m[4]) { |
108 |
|
|
double A, B, C; |
109 |
|
|
int ret; |
110 |
|
|
|
111 |
|
|
A = 1; |
112 |
|
|
B = -m[0] - m[3]; |
113 |
|
|
C = m[0]*m[3] - m[1]*m[2]; |
114 |
|
|
ret = ell_quadratic(eval, A, B, C); |
115 |
|
|
return ret; |
116 |
|
|
} |
117 |
|
|
|
118 |
|
|
void |
119 |
|
|
ell_2m_1d_nullspace_d(double ans[2], const double _n[4]) { |
120 |
|
|
/* static const char me[]="ell_2m_1d_nullspace_d"; */ |
121 |
|
|
double n[4], dot, len, rowv[2]; |
122 |
|
|
|
123 |
|
|
ELL_4V_COPY(n, _n); |
124 |
|
|
dot = ELL_2V_DOT(n + 2*0, n + 2*1); |
125 |
|
|
/* |
126 |
|
|
fprintf(stderr, "!%s: n = {{%g,%g},{%g,%g}}\n", me, |
127 |
|
|
n[0], n[1], n[2], n[3]); |
128 |
|
|
fprintf(stderr, "!%s: dot = %g\n", me, dot); |
129 |
|
|
*/ |
130 |
|
|
if (dot > 0) { |
131 |
|
|
ELL_2V_ADD2(rowv, n + 2*0, n + 2*1); |
132 |
|
|
} else { |
133 |
|
|
ELL_2V_SUB(rowv, n + 2*0, n + 2*1); |
134 |
|
|
} |
135 |
|
|
/* fprintf(stderr, "!%s: rowv = %g %g\n", me, rowv[0], rowv[1]); */ |
136 |
|
|
/* have found good description of what's perpendicular nullspace, |
137 |
|
|
so now perpendicularize it */ |
138 |
|
|
ans[0] = rowv[1]; |
139 |
|
|
ans[1] = -rowv[0]; |
140 |
|
|
ELL_2V_NORM(ans, ans, len); |
141 |
|
|
/* |
142 |
|
|
if (!(AIR_EXISTS(ans[0]) && AIR_EXISTS(ans[1]))) { |
143 |
|
|
fprintf(stderr, "!%s: bad! %g %g\n", me, ans[0], ans[1]); |
144 |
|
|
} |
145 |
|
|
*/ |
146 |
|
|
return; |
147 |
|
|
} |
148 |
|
|
|
149 |
|
|
/* |
150 |
|
|
******** ell_2m_eigensolve_d |
151 |
|
|
** |
152 |
|
|
** Eigensolve 2x2 matrix, which may be asymmetric |
153 |
|
|
*/ |
154 |
|
|
int |
155 |
|
|
ell_2m_eigensolve_d(double eval[2], double evec[4], const double m[4]) { |
156 |
|
|
/* static const char me[]="ell_2m_eigensolve_d"; */ |
157 |
|
|
double nul[4], ident[4] = {1,0,0,1}; |
158 |
|
|
int ret; |
159 |
|
|
|
160 |
|
|
ret = ell_2m_eigenvalues_d(eval, m); |
161 |
|
|
/* |
162 |
|
|
fprintf(stderr, "!%s: m = {{%.17g,%.17g},{%.17g,%.17g}} -> " |
163 |
|
|
"%s evals (%.17g,%.17g)\n", me, m[0], m[1], m[2], m[3], |
164 |
|
|
airEnumStr(ell_quadratic_root, ret), eval[0], eval[1]); |
165 |
|
|
*/ |
166 |
|
|
switch (ret) { |
167 |
|
|
case ell_quadratic_root_two: |
168 |
|
|
ELL_4V_SCALE_ADD2(nul, 1.0, m, -eval[0], ident); |
169 |
|
|
ell_2m_1d_nullspace_d(evec + 2*0, nul); |
170 |
|
|
/* |
171 |
|
|
fprintf(stderr, "!%s: eval=%.17g -> nul {{%.17g,%.17g},{%.17g,%.17g}} " |
172 |
|
|
"-> evec %.17g %.17g\n", me, eval[0], |
173 |
|
|
nul[0], nul[1], nul[2], nul[3], |
174 |
|
|
(evec + 2*0)[0], (evec + 2*0)[1]); |
175 |
|
|
*/ |
176 |
|
|
ELL_4V_SCALE_ADD2(nul, 1.0, m, -eval[1], ident); |
177 |
|
|
ell_2m_1d_nullspace_d(evec + 2*1, nul); |
178 |
|
|
/* |
179 |
|
|
fprintf(stderr, "!%s: eval=%.17g -> nul {{%.17g,%.17g},{%.17g,%.17g}} " |
180 |
|
|
"-> evec %.17g %.17g\n", me, eval[1], |
181 |
|
|
nul[0], nul[1], nul[2], nul[3], |
182 |
|
|
(evec + 2*1)[0], (evec + 2*1)[1]); |
183 |
|
|
*/ |
184 |
|
|
break; |
185 |
|
|
case ell_quadratic_root_double: |
186 |
|
|
/* fprintf(stderr, "!%s: double eval=%.17g\n", me, eval[0]); */ |
187 |
|
|
ELL_4V_SCALE_ADD2(nul, 1.0, m, -eval[0], ident); |
188 |
|
|
/* |
189 |
|
|
fprintf(stderr, "!%s: nul = {{%.17g,%.17g},{%.17g,%.17g}} (len %.17g)\n", |
190 |
|
|
me, nul[0], nul[1], nul[2], nul[3], ELL_4V_LEN(nul)); |
191 |
|
|
*/ |
192 |
|
|
if (ELL_4V_DOT(nul, nul)) { |
193 |
|
|
/* projecting out the nullspace produced non-zero matrix, |
194 |
|
|
(possibly from an asymmetric matrix) so there is real |
195 |
|
|
orientation to recover */ |
196 |
|
|
ell_2m_1d_nullspace_d(evec + 2*0, nul); |
197 |
|
|
ELL_2V_COPY(evec + 2*1, evec + 2*0); |
198 |
|
|
} else { |
199 |
|
|
/* so this was isotropic symmetric; invent orientation */ |
200 |
|
|
ELL_2V_SET(evec + 2*0, 1, 0); |
201 |
|
|
ELL_2V_SET(evec + 2*1, 0, 1); |
202 |
|
|
} |
203 |
|
|
break; |
204 |
|
|
case ell_quadratic_root_complex: |
205 |
|
|
/* HEY punting for now */ |
206 |
|
|
ELL_2V_SET(evec + 2*0, 0.5, 0); |
207 |
|
|
ELL_2V_SET(evec + 2*1, 0, 0.5); |
208 |
|
|
break; |
209 |
|
|
default: |
210 |
|
|
/* fprintf(stderr, "%s: unexpected solution indicator %d\n", me, ret); */ |
211 |
|
|
break; |
212 |
|
|
} |
213 |
|
|
return ret; |
214 |
|
|
} |
215 |
|
|
|
216 |
|
|
|
217 |
|
|
void |
218 |
|
|
_ell_align3_d(double v[9]) { |
219 |
|
|
double d0, d1, d2; |
220 |
|
|
int Mi, ai, bi; |
221 |
|
|
|
222 |
|
|
d0 = ELL_3V_DOT(v+0, v+0); |
223 |
|
|
d1 = ELL_3V_DOT(v+3, v+3); |
224 |
|
|
d2 = ELL_3V_DOT(v+6, v+6); |
225 |
|
|
Mi = ELL_MAX3_IDX(d0, d1, d2); |
226 |
|
|
ai = (Mi + 1) % 3; |
227 |
|
|
bi = (Mi + 2) % 3; |
228 |
|
|
/* lop A */ |
229 |
|
|
if (ELL_3V_DOT(v+3*Mi, v+3*ai) < 0) { |
230 |
|
|
ELL_3V_SCALE(v+3*ai, -1, v+3*ai); |
231 |
|
|
} |
232 |
|
|
if (ELL_3V_DOT(v+3*Mi, v+3*bi) < 0) { |
233 |
|
|
ELL_3V_SCALE(v+3*bi, -1, v+3*bi); |
234 |
|
|
} |
235 |
|
|
/* lob B */ |
236 |
|
|
/* we can't guarantee that dot(v+3*ai,v+3*bi) > 0 . . . */ |
237 |
|
|
} |
238 |
|
|
|
239 |
|
|
/* |
240 |
|
|
** leaves v+3*0 untouched, but makes sure that v+3*0, v+3*1, and v+3*2 |
241 |
|
|
** are mutually orthogonal. Also leaves the magnitudes of all |
242 |
|
|
** vectors unchanged. |
243 |
|
|
*/ |
244 |
|
|
void |
245 |
|
|
_ell_3m_enforce_orthogonality(double v[9]) { |
246 |
|
|
double d00, d10, d11, d20, d21, d22, scl, tv[3]; |
247 |
|
|
|
248 |
|
|
d00 = ELL_3V_DOT(v+3*0, v+3*0); |
249 |
|
|
d10 = ELL_3V_DOT(v+3*1, v+3*0); |
250 |
|
|
d11 = ELL_3V_DOT(v+3*1, v+3*1); |
251 |
|
|
ELL_3V_SCALE_ADD2(tv, 1, v+3*1, -d10/d00, v+3*0); |
252 |
|
|
scl = sqrt(d11/ELL_3V_DOT(tv, tv)); |
253 |
|
|
ELL_3V_SCALE(v+3*1, scl, tv); |
254 |
|
|
d20 = ELL_3V_DOT(v+3*2, v+3*0); |
255 |
|
|
d21 = ELL_3V_DOT(v+3*2, v+3*1); |
256 |
|
|
d22 = ELL_3V_DOT(v+3*2, v+3*2); |
257 |
|
|
ELL_3V_SCALE_ADD3(tv, 1, v+3*2, -d20/d00, v+3*0, -d21/d00, v+3*1); |
258 |
|
|
scl = sqrt(d22/ELL_3V_DOT(tv, tv)); |
259 |
|
|
ELL_3V_SCALE(v+3*2, scl, tv); |
260 |
|
|
return; |
261 |
|
|
} |
262 |
|
|
|
263 |
|
|
/* |
264 |
|
|
** makes sure that v+3*2 has a positive dot product with |
265 |
|
|
** cross product of v+3*0 and v+3*1 |
266 |
|
|
*/ |
267 |
|
|
void |
268 |
|
|
_ell_3m_make_right_handed_d(double v[9]) { |
269 |
|
|
double x[3]; |
270 |
|
|
|
271 |
|
|
ELL_3V_CROSS(x, v+3*0, v+3*1); |
272 |
|
|
if (0 > ELL_3V_DOT(x, v+3*2)) { |
273 |
|
|
ELL_3V_SCALE(v+3*2, -1, v+3*2); |
274 |
|
|
} |
275 |
|
|
} |
276 |
|
|
|
277 |
|
|
/* lop A |
278 |
|
|
fprintf(stderr, "=== pre ===\n"); |
279 |
|
|
fprintf(stderr, "crosses: %g %g %g\n", (t+0)[0], (t+0)[1], (t+0)[2]); |
280 |
|
|
fprintf(stderr, " %g %g %g\n", (t+3)[0], (t+3)[1], (t+3)[2]); |
281 |
|
|
fprintf(stderr, " %g %g %g\n", (t+6)[0], (t+6)[1], (t+6)[2]); |
282 |
|
|
fprintf(stderr, "cross dots: %g %g %g\n", |
283 |
|
|
ELL_3V_DOT(t+0, t+3), ELL_3V_DOT(t+0, t+6), ELL_3V_DOT(t+3, t+6)); |
284 |
|
|
*/ |
285 |
|
|
|
286 |
|
|
/* lop B |
287 |
|
|
fprintf(stderr, "=== post ===\n"); |
288 |
|
|
fprintf(stderr, "crosses: %g %g %g\n", (t+0)[0], (t+0)[1], (t+0)[2]); |
289 |
|
|
fprintf(stderr, " %g %g %g\n", (t+3)[0], (t+3)[1], (t+3)[2]); |
290 |
|
|
fprintf(stderr, " %g %g %g\n", (t+6)[0], (t+6)[1], (t+6)[2]); |
291 |
|
|
fprintf(stderr, "cross dots: %g %g %g\n", |
292 |
|
|
ELL_3V_DOT(t+0, t+3), ELL_3V_DOT(t+0, t+6), ELL_3V_DOT(t+3, t+6)); |
293 |
|
|
*/ |
294 |
|
|
|
295 |
|
|
/* |
296 |
|
|
******** ell_3m_1d_nullspace_d() |
297 |
|
|
** |
298 |
|
|
** the given matrix is assumed to have a nullspace of dimension one. |
299 |
|
|
** A normalized vector which spans the nullspace is put into ans. |
300 |
|
|
** |
301 |
|
|
** The given nullspace matrix is NOT modified. |
302 |
|
|
** |
303 |
|
|
** This does NOT use biff |
304 |
|
|
*/ |
305 |
|
|
void |
306 |
|
|
ell_3m_1d_nullspace_d(double ans[3], const double _n[9]) { |
307 |
|
|
double t[9], n[9], norm; |
308 |
|
|
|
309 |
|
|
ELL_3M_TRANSPOSE(n, _n); |
310 |
|
|
/* find the three cross-products of pairs of column vectors of n */ |
311 |
|
|
ELL_3V_CROSS(t+0, n+0, n+3); |
312 |
|
|
ELL_3V_CROSS(t+3, n+0, n+6); |
313 |
|
|
ELL_3V_CROSS(t+6, n+3, n+6); |
314 |
|
|
/* lop A */ |
315 |
|
|
_ell_align3_d(t); |
316 |
|
|
/* lop B */ |
317 |
|
|
/* add them up (longer, hence more accurate, should dominate) */ |
318 |
|
|
ELL_3V_ADD3(ans, t+0, t+3, t+6); |
319 |
|
|
|
320 |
|
|
/* normalize */ |
321 |
|
|
ELL_3V_NORM(ans, ans, norm); |
322 |
|
|
|
323 |
|
|
return; |
324 |
|
|
} |
325 |
|
|
|
326 |
|
|
/* |
327 |
|
|
******** ell_3m_2d_nullspace_d() |
328 |
|
|
** |
329 |
|
|
** the given matrix is assumed to have a nullspace of dimension two. |
330 |
|
|
** |
331 |
|
|
** The given nullspace matrix is NOT modified |
332 |
|
|
** |
333 |
|
|
** This does NOT use biff |
334 |
|
|
*/ |
335 |
|
|
void |
336 |
|
|
ell_3m_2d_nullspace_d(double ans0[3], double ans1[3], const double _n[9]) { |
337 |
|
|
double n[9], tmp[3], norm; |
338 |
|
|
|
339 |
|
|
ELL_3M_TRANSPOSE(n, _n); |
340 |
|
|
_ell_align3_d(n); |
341 |
|
|
ELL_3V_ADD3(tmp, n+0, n+3, n+6); |
342 |
|
|
ELL_3V_NORM(tmp, tmp, norm); |
343 |
|
|
|
344 |
|
|
/* any two vectors which are perpendicular to the (supposedly 1D) |
345 |
|
|
span of the column vectors span the nullspace */ |
346 |
|
|
ell_3v_perp_d(ans0, tmp); |
347 |
|
|
ELL_3V_NORM(ans0, ans0, norm); |
348 |
|
|
ELL_3V_CROSS(ans1, tmp, ans0); |
349 |
|
|
|
350 |
|
|
return; |
351 |
|
|
} |
352 |
|
|
|
353 |
|
|
/* |
354 |
|
|
******** ell_3m_eigenvalues_d() |
355 |
|
|
** |
356 |
|
|
** finds eigenvalues of given matrix. |
357 |
|
|
** |
358 |
|
|
** returns information about the roots according to ellCubeRoot enum, |
359 |
|
|
** see header for ellCubic for details. |
360 |
|
|
** |
361 |
|
|
** given matrix is NOT modified |
362 |
|
|
** |
363 |
|
|
** This does NOT use biff |
364 |
|
|
** |
365 |
|
|
** Doing the frobenius normalization proved successfull in avoiding the |
366 |
|
|
** the creating of NaN eigenvalues when the coefficients of the matrix |
367 |
|
|
** were really large (> 50000). Also, when the matrix norm was really |
368 |
|
|
** small, the comparison to "epsilon" in ell_cubic mistook three separate |
369 |
|
|
** roots for a single and a double, with this matrix in particular: |
370 |
|
|
** 1.7421892 0.0137642 0.0152975 |
371 |
|
|
** 0.0137642 1.7565432 -0.0062296 |
372 |
|
|
** 0.0152975 -0.0062296 1.7700019 |
373 |
|
|
** (actually, this is prior to tenEigensolve's isotropic removal) |
374 |
|
|
** |
375 |
|
|
** HEY: tenEigensolve_d and tenEigensolve_f start by removing the |
376 |
|
|
** isotropic part of the tensor. It may be that that smarts should |
377 |
|
|
** be migrated here, but GLK is uncertain how it would change the |
378 |
|
|
** handling of non-symmetric matrices. |
379 |
|
|
*/ |
380 |
|
|
int |
381 |
|
|
ell_3m_eigenvalues_d(double _eval[3], const double _m[9], const int newton) { |
382 |
|
|
double A, B, C, scale, frob, m[9], eval[3]; |
383 |
|
|
int roots; |
384 |
|
|
|
385 |
|
|
frob = ELL_3M_FROB(_m); |
386 |
|
|
scale = frob ? 1.0/frob : 1.0; |
387 |
|
|
ELL_3M_SCALE(m, scale, _m); |
388 |
|
|
/* |
389 |
|
|
printf("!%s: m = %g %g %g; %g %g %g; %g %g %g\n", "ell_3m_eigenvalues_d", |
390 |
|
|
m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]); |
391 |
|
|
*/ |
392 |
|
|
/* |
393 |
|
|
** from gordon with mathematica; these are the coefficients of the |
394 |
|
|
** cubic polynomial in x: det(x*I - M). The full cubic is |
395 |
|
|
** x^3 + A*x^2 + B*x + C. |
396 |
|
|
*/ |
397 |
|
|
A = -m[0] - m[4] - m[8]; |
398 |
|
|
B = m[0]*m[4] - m[3]*m[1] |
399 |
|
|
+ m[0]*m[8] - m[6]*m[2] |
400 |
|
|
+ m[4]*m[8] - m[7]*m[5]; |
401 |
|
|
C = (m[6]*m[4] - m[3]*m[7])*m[2] |
402 |
|
|
+ (m[0]*m[7] - m[6]*m[1])*m[5] |
403 |
|
|
+ (m[3]*m[1] - m[0]*m[4])*m[8]; |
404 |
|
|
/* |
405 |
|
|
printf("!%s: A B C = %g %g %g\n", "ell_3m_eigenvalues_d", A, B, C); |
406 |
|
|
*/ |
407 |
|
|
roots = ell_cubic(eval, A, B, C, newton); |
408 |
|
|
/* no longer need to sort here */ |
409 |
|
|
ELL_3V_SCALE(_eval, 1.0/scale, eval); |
410 |
|
|
return roots; |
411 |
|
|
} |
412 |
|
|
|
413 |
|
|
void |
414 |
|
|
_ell_3m_evecs_d(double evec[9], double eval[3], int roots, |
415 |
|
|
const double m[9]) { |
416 |
|
|
double n[9], e0=0, e1=0.0, e2=0.0, t /* , tmpv[3] */ ; |
417 |
|
|
|
418 |
|
|
ELL_3V_GET(e0, e1, e2, eval); |
419 |
|
|
/* if (ell_debug) { |
420 |
|
|
printf("ell_3m_evecs_d: numroots = %d\n", numroots); |
421 |
|
|
} */ |
422 |
|
|
|
423 |
|
|
/* we form m - lambda*I by doing a memcpy from m, and then |
424 |
|
|
(repeatedly) over-writing the diagonal elements */ |
425 |
|
|
ELL_3M_COPY(n, m); |
426 |
|
|
switch (roots) { |
427 |
|
|
case ell_cubic_root_three: |
428 |
|
|
/* if (ell_debug) { |
429 |
|
|
printf("ell_3m_evecs_d: evals: %20.15f %20.15f %20.15f\n", |
430 |
|
|
eval[0], eval[1], eval[2]); |
431 |
|
|
} */ |
432 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0); |
433 |
|
|
ell_3m_1d_nullspace_d(evec+0, n); |
434 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e1, m[4]-e1, m[8]-e1); |
435 |
|
|
ell_3m_1d_nullspace_d(evec+3, n); |
436 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e2, m[4]-e2, m[8]-e2); |
437 |
|
|
ell_3m_1d_nullspace_d(evec+6, n); |
438 |
|
|
_ell_3m_enforce_orthogonality(evec); |
439 |
|
|
_ell_3m_make_right_handed_d(evec); |
440 |
|
|
ELL_3V_SET(eval, e0, e1, e2); |
441 |
|
|
break; |
442 |
|
|
case ell_cubic_root_single_double: |
443 |
|
|
ELL_SORT3(e0, e1, e2, t); |
444 |
|
|
if (e0 > e1) { |
445 |
|
|
/* one big (e0) , two small (e1, e2) : more like a cigar */ |
446 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0); |
447 |
|
|
ell_3m_1d_nullspace_d(evec+0, n); |
448 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e1, m[4]-e1, m[8]-e1); |
449 |
|
|
ell_3m_2d_nullspace_d(evec+3, evec+6, n); |
450 |
|
|
} |
451 |
|
|
else { |
452 |
|
|
/* two big (e0, e1), one small (e2): more like a pancake */ |
453 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0); |
454 |
|
|
ell_3m_2d_nullspace_d(evec+0, evec+3, n); |
455 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e2, m[4]-e2, m[8]-e2); |
456 |
|
|
ell_3m_1d_nullspace_d(evec+6, n); |
457 |
|
|
} |
458 |
|
|
_ell_3m_enforce_orthogonality(evec); |
459 |
|
|
_ell_3m_make_right_handed_d(evec); |
460 |
|
|
ELL_3V_SET(eval, e0, e1, e2); |
461 |
|
|
break; |
462 |
|
|
case ell_cubic_root_triple: |
463 |
|
|
/* one triple root; use any basis as the eigenvectors */ |
464 |
|
|
ELL_3V_SET(evec+0, 1, 0, 0); |
465 |
|
|
ELL_3V_SET(evec+3, 0, 1, 0); |
466 |
|
|
ELL_3V_SET(evec+6, 0, 0, 1); |
467 |
|
|
ELL_3V_SET(eval, e0, e1, e2); |
468 |
|
|
break; |
469 |
|
|
case ell_cubic_root_single: |
470 |
|
|
/* only one real root */ |
471 |
|
|
ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0); |
472 |
|
|
ell_3m_1d_nullspace_d(evec+0, n); |
473 |
|
|
ELL_3V_SET(evec+3, AIR_NAN, AIR_NAN, AIR_NAN); |
474 |
|
|
ELL_3V_SET(evec+6, AIR_NAN, AIR_NAN, AIR_NAN); |
475 |
|
|
ELL_3V_SET(eval, e0, AIR_NAN, AIR_NAN); |
476 |
|
|
break; |
477 |
|
|
} |
478 |
|
|
/* if (ell_debug) { |
479 |
|
|
printf("ell_3m_evecs_d (numroots = %d): evecs: \n", numroots); |
480 |
|
|
ELL_3MV_MUL(tmpv, m, evec[0]); |
481 |
|
|
printf(" (%g:%g): %20.15f %20.15f %20.15f\n", |
482 |
|
|
eval[0], ELL_3V_DOT(evec[0], tmpv), |
483 |
|
|
evec[0][0], evec[0][1], evec[0][2]); |
484 |
|
|
ELL_3MV_MUL(tmpv, m, evec[1]); |
485 |
|
|
printf(" (%g:%g): %20.15f %20.15f %20.15f\n", |
486 |
|
|
eval[1], ELL_3V_DOT(evec[1], tmpv), |
487 |
|
|
evec[1][0], evec[1][1], evec[1][2]); |
488 |
|
|
ELL_3MV_MUL(tmpv, m, evec[2]); |
489 |
|
|
printf(" (%g:%g): %20.15f %20.15f %20.15f\n", |
490 |
|
|
eval[2], ELL_3V_DOT(evec[2], tmpv), |
491 |
|
|
evec[2][0], evec[2][1], evec[2][2]); |
492 |
|
|
} */ |
493 |
|
|
return; |
494 |
|
|
} |
495 |
|
|
|
496 |
|
|
/* |
497 |
|
|
******** ell_3m_eigensolve_d() |
498 |
|
|
** |
499 |
|
|
** finds eigenvalues and eigenvectors of given matrix m |
500 |
|
|
** |
501 |
|
|
** returns information about the roots according to ellCubeRoot enum, |
502 |
|
|
** see header for ellCubic for details. When eval[i] is set, evec+3*i |
503 |
|
|
** is set to a corresponding eigenvector. The eigenvectors are |
504 |
|
|
** (evec+0)[], (evec+3)[], and (evec+6)[] |
505 |
|
|
** |
506 |
|
|
** NOTE: Even in the post-Teem-1.7 switch from column-major to |
507 |
|
|
** row-major- its still the case that the eigenvectors are at |
508 |
|
|
** evec+0, evec+3, evec+6: this means that they USED to be the |
509 |
|
|
** "columns" of the matrix, and NOW they're the rows. |
510 |
|
|
** |
511 |
|
|
** The eigenvalues (and associated eigenvectors) are sorted in |
512 |
|
|
** descending order. |
513 |
|
|
** |
514 |
|
|
** This does NOT use biff |
515 |
|
|
*/ |
516 |
|
|
int |
517 |
|
|
ell_3m_eigensolve_d(double eval[3], double evec[9], |
518 |
|
|
const double m[9], const int newton) { |
519 |
|
|
int roots; |
520 |
|
|
|
521 |
|
|
/* if (ell_debug) { |
522 |
|
|
printf("ell_3m_eigensolve_d: input matrix:\n"); |
523 |
|
|
printf("{{%20.15f,\t%20.15f,\t%20.15f},\n", m[0], m[1], m[2]); |
524 |
|
|
printf(" {%20.15f,\t%20.15f,\t%20.15f},\n", m[3], m[4], m[5]); |
525 |
|
|
printf(" {%20.15f,\t%20.15f,\t%20.15f}};\n",m[6], m[7], m[8]); |
526 |
|
|
} */ |
527 |
|
|
|
528 |
|
|
roots = ell_3m_eigenvalues_d(eval, m, newton); |
529 |
|
|
_ell_3m_evecs_d(evec, eval, roots, m); |
530 |
|
|
|
531 |
|
|
return roots; |
532 |
|
|
} |
533 |
|
|
|
534 |
|
|
/* ____________________________ 3m2sub ____________________________ */ |
535 |
|
|
/* |
536 |
|
|
******** ell_3m2sub_eigenvalues_d |
537 |
|
|
** |
538 |
|
|
** for doing eigensolve of the upper-left 2x2 matrix sub-matrix of a |
539 |
|
|
** 3x3 matrix. The other entries are assumed to be zero. A 0 root is |
540 |
|
|
** put last (in eval[2]), possibly in defiance of the usual eigenvalue |
541 |
|
|
** ordering. |
542 |
|
|
*/ |
543 |
|
|
int |
544 |
|
|
ell_3m2sub_eigenvalues_d(double eval[3], const double _m[9]) { |
545 |
|
|
double A, B, m[4], D, Dsq, eps=1.0E-11; |
546 |
|
|
int roots; |
547 |
|
|
/* static const char me[]="ell_3m2sub_eigenvalues_d"; */ |
548 |
|
|
|
549 |
|
|
m[0] = _m[0]; |
550 |
|
|
m[1] = _m[1]; |
551 |
|
|
m[2] = _m[3]; |
552 |
|
|
m[3] = _m[4]; |
553 |
|
|
|
554 |
|
|
/* cubic characteristic equation is L^3 + A*L^2 + B*L = 0 */ |
555 |
|
|
A = -m[0] - m[3]; |
556 |
|
|
B = m[0]*m[3] - m[1]*m[2]; |
557 |
|
|
Dsq = A*A - 4*B; |
558 |
|
|
/* |
559 |
|
|
fprintf(stderr, "!%s: m = {{%f,%f},{%f,%f}} -> A=%f B=%f Dsq=%.17f %s 0 (%.17f)\n", me, |
560 |
|
|
m[0], m[1], m[2], m[3], A, B, Dsq, |
561 |
|
|
(Dsq > 0 ? ">" : (Dsq < 0 ? "<" : "==")), eps); |
562 |
|
|
fprintf(stderr, "!%s: Dsq = \n", me); |
563 |
|
|
airFPFprintf_d(stderr, Dsq); |
564 |
|
|
fprintf(stderr, "!%s: eps = \n", me); |
565 |
|
|
airFPFprintf_d(stderr, eps); |
566 |
|
|
ell_3m_print_d(stderr, _m); |
567 |
|
|
*/ |
568 |
|
|
if (Dsq > eps) { |
569 |
|
|
D = sqrt(Dsq); |
570 |
|
|
eval[0] = (-A + D)/2; |
571 |
|
|
eval[1] = (-A - D)/2; |
572 |
|
|
eval[2] = 0; |
573 |
|
|
roots = ell_cubic_root_three; |
574 |
|
|
} else if (Dsq < -eps) { |
575 |
|
|
/* no quadratic roots; only the implied zero */ |
576 |
|
|
ELL_3V_SET(eval, AIR_NAN, AIR_NAN, 0); |
577 |
|
|
roots = ell_cubic_root_single; |
578 |
|
|
} else { |
579 |
|
|
/* a quadratic double root */ |
580 |
|
|
ELL_3V_SET(eval, -A/2, -A/2, 0); |
581 |
|
|
roots = ell_cubic_root_single_double; |
582 |
|
|
} |
583 |
|
|
/* |
584 |
|
|
fprintf(stderr, "!%s: Dsq=%f, roots=%d (%f %f %f)\n", |
585 |
|
|
me, Dsq, roots, eval[0], eval[1], eval[2]); |
586 |
|
|
*/ |
587 |
|
|
return roots; |
588 |
|
|
} |
589 |
|
|
|
590 |
|
|
void |
591 |
|
|
_ell_22v_enforce_orthogonality(double uu[2], double _vv[2]) { |
592 |
|
|
double dot, vv[2], len; |
593 |
|
|
|
594 |
|
|
dot = ELL_2V_DOT(uu, _vv); |
595 |
|
|
ELL_2V_SCALE_ADD2(vv, 1, _vv, -dot, uu); |
596 |
|
|
ELL_2V_NORM(_vv, vv, len); |
597 |
|
|
return; |
598 |
|
|
} |
599 |
|
|
|
600 |
|
|
/* |
601 |
|
|
** NOTE: assumes that eval and roots have come from |
602 |
|
|
** ell_3m2sub_eigenvalues_d(m) |
603 |
|
|
*/ |
604 |
|
|
void |
605 |
|
|
_ell_3m2sub_evecs_d(double evec[9], double eval[3], int roots, |
606 |
|
|
const double m[9]) { |
607 |
|
|
double n[4]; |
608 |
|
|
static const char me[]="_ell_3m2sub_evecs_d"; |
609 |
|
|
|
610 |
|
|
if (ell_cubic_root_three == roots) { |
611 |
|
|
/* set off-diagonal entries once */ |
612 |
|
|
n[1] = m[1]; |
613 |
|
|
n[2] = m[3]; |
614 |
|
|
/* find first evec */ |
615 |
|
|
n[0] = m[0] - eval[0]; |
616 |
|
|
n[3] = m[4] - eval[0]; |
617 |
|
|
ell_2m_1d_nullspace_d(evec + 3*0, n); |
618 |
|
|
(evec + 3*0)[2] = 0; |
619 |
|
|
/* find second evec */ |
620 |
|
|
n[0] = m[0] - eval[1]; |
621 |
|
|
n[3] = m[4] - eval[1]; |
622 |
|
|
ell_2m_1d_nullspace_d(evec + 3*1, n); |
623 |
|
|
(evec + 3*1)[2] = 0; |
624 |
|
|
_ell_22v_enforce_orthogonality(evec + 3*0, evec + 3*1); |
625 |
|
|
/* make right-handed */ |
626 |
|
|
ELL_3V_CROSS(evec + 3*2, evec + 3*0, evec + 3*1); |
627 |
|
|
} else if (ell_cubic_root_single_double == roots) { |
628 |
|
|
/* can pick any 2D basis */ |
629 |
|
|
ELL_3V_SET(evec + 3*0, 1, 0, 0); |
630 |
|
|
ELL_3V_SET(evec + 3*1, 0, 1, 0); |
631 |
|
|
ELL_3V_SET(evec + 3*2, 0, 0, 1); |
632 |
|
|
} else { |
633 |
|
|
/* ell_cubic_root_single == roots, if assumptions are met */ |
634 |
|
|
ELL_3V_SET(evec + 3*0, AIR_NAN, AIR_NAN, 0); |
635 |
|
|
ELL_3V_SET(evec + 3*1, AIR_NAN, AIR_NAN, 0); |
636 |
|
|
ELL_3V_SET(evec + 3*2, 0, 0, 1); |
637 |
|
|
} |
638 |
|
|
if (!ELL_3M_EXISTS(evec)) { |
639 |
|
|
fprintf(stderr, "%s: given m = \n", me); |
640 |
|
|
ell_3m_print_d(stderr, m); |
641 |
|
|
fprintf(stderr, "%s: got roots = %s (%d) and evecs = \n", me, |
642 |
|
|
airEnumStr(ell_cubic_root, roots), roots); |
643 |
|
|
ell_3m_print_d(stderr, evec); |
644 |
|
|
} |
645 |
|
|
return; |
646 |
|
|
} |
647 |
|
|
|
648 |
|
|
int |
649 |
|
|
ell_3m2sub_eigensolve_d(double eval[3], double evec[9], |
650 |
|
|
const double m[9]) { |
651 |
|
|
int roots; |
652 |
|
|
|
653 |
|
|
roots = ell_3m2sub_eigenvalues_d(eval, m); |
654 |
|
|
_ell_3m2sub_evecs_d(evec, eval, roots, m); |
655 |
|
|
|
656 |
|
|
return roots; |
657 |
|
|
} |
658 |
|
|
|
659 |
|
|
/* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3m2sub ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ */ |
660 |
|
|
|
661 |
|
|
/* |
662 |
|
|
******** ell_3m_svd_d |
663 |
|
|
** |
664 |
|
|
** singular value decomposition: |
665 |
|
|
** mat = uu * diag(sval) * vv |
666 |
|
|
** |
667 |
|
|
** singular values are square roots of eigenvalues of mat * mat^T |
668 |
|
|
** columns of uu are eigenvectors of mat * mat^T |
669 |
|
|
** rows of vv are eigenvectors of mat^T * mat |
670 |
|
|
** |
671 |
|
|
** returns info about singular values according to ellCubeRoot enum |
672 |
|
|
** |
673 |
|
|
** HEY: I think this does the wrong thing when given a symmetric |
674 |
|
|
** matrix with negative eigenvalues . . . |
675 |
|
|
*/ |
676 |
|
|
int |
677 |
|
|
ell_3m_svd_d(double uu[9], double sval[3], double vv[9], |
678 |
|
|
const double mat[9], const int newton) { |
679 |
|
|
double trn[9], msqr[9], eval[3], evec[9]; |
680 |
|
|
int roots; |
681 |
|
|
|
682 |
|
|
ELL_3M_TRANSPOSE(trn, mat); |
683 |
|
|
ELL_3M_MUL(msqr, mat, trn); |
684 |
|
|
roots = ell_3m_eigensolve_d(eval, evec, msqr, newton); |
685 |
|
|
sval[0] = sqrt(eval[0]); |
686 |
|
|
sval[1] = sqrt(eval[1]); |
687 |
|
|
sval[2] = sqrt(eval[2]); |
688 |
|
|
ELL_3M_TRANSPOSE(uu, evec); |
689 |
|
|
ELL_3M_MUL(msqr, trn, mat); |
690 |
|
|
_ell_3m_evecs_d(vv, eval, roots, msqr); |
691 |
|
|
|
692 |
|
|
return roots; |
693 |
|
|
} |
694 |
|
|
|
695 |
|
|
/* |
696 |
|
|
** NOTE: profiling showed that about a quarter of the execution time of |
697 |
|
|
** ell_6ms_eigensolve_d() is spent here; so reconsider its need and |
698 |
|
|
** implementation . . . (fabs vs. AIR_ABS() made no difference) |
699 |
|
|
*/ |
700 |
|
|
static void |
701 |
|
|
_maxI_sum_find(unsigned int maxI[2], double *sumon, double *sumoff, |
702 |
|
|
double mat[6][6]) { |
703 |
|
|
double maxm, tmp; |
704 |
|
|
unsigned int rrI, ccI; |
705 |
|
|
|
706 |
|
|
/* we hope that all these loops are unrolled by the optimizer */ |
707 |
|
|
*sumon = *sumoff = 0.0; |
708 |
|
|
for (rrI=0; rrI<6; rrI++) { |
709 |
|
|
*sumon += AIR_ABS(mat[rrI][rrI]); |
710 |
|
|
} |
711 |
|
|
maxm = -1; |
712 |
|
|
maxI[0] = maxI[1] = 0; |
713 |
|
|
for (rrI=0; rrI<5; rrI++) { |
714 |
|
|
for (ccI=rrI+1; ccI<6; ccI++) { |
715 |
|
|
tmp = AIR_ABS(mat[rrI][ccI]); |
716 |
|
|
*sumoff += tmp; |
717 |
|
|
if (tmp > maxm) { |
718 |
|
|
maxm = tmp; |
719 |
|
|
maxI[0] = rrI; |
720 |
|
|
maxI[1] = ccI; |
721 |
|
|
} |
722 |
|
|
} |
723 |
|
|
} |
724 |
|
|
|
725 |
|
|
/* |
726 |
|
|
if (1) { |
727 |
|
|
double nrm, trc; |
728 |
|
|
nrm = trc = 0; |
729 |
|
|
for (rrI=0; rrI<6; rrI++) { |
730 |
|
|
trc += mat[rrI][rrI]; |
731 |
|
|
nrm += mat[rrI][rrI]*mat[rrI][rrI]; |
732 |
|
|
} |
733 |
|
|
for (rrI=0; rrI<5; rrI++) { |
734 |
|
|
for (ccI=rrI+1; ccI<6; ccI++) { |
735 |
|
|
nrm += 2*mat[rrI][ccI]*mat[rrI][ccI]; |
736 |
|
|
} |
737 |
|
|
} |
738 |
|
|
fprintf(stderr, "---------------- invars = %g %g\n", trc, nrm); |
739 |
|
|
} |
740 |
|
|
*/ |
741 |
|
|
|
742 |
|
|
return; |
743 |
|
|
} |
744 |
|
|
|
745 |
|
|
static int |
746 |
|
|
_compar(const void *A_void, const void *B_void) { |
747 |
|
|
const double *A, *B; |
748 |
|
|
A = AIR_CAST(const double *, A_void); |
749 |
|
|
B = AIR_CAST(const double *, B_void); |
750 |
|
|
return (A[0] < B[0] ? 1 : (A[0] > B[0] ? -1 : 0)); |
751 |
|
|
} |
752 |
|
|
|
753 |
|
|
/* |
754 |
|
|
******* ell_6ms_eigensolve_d |
755 |
|
|
** |
756 |
|
|
** uses Jacobi iterations to find eigensystem of 6x6 symmetric matrix, |
757 |
|
|
** given in sym[21], to within convergence threshold eps. Puts |
758 |
|
|
** eigenvalues, in descending order, in eval[6], and corresponding |
759 |
|
|
** eigenvectors in _evec+0, _evec+6, . . ., _evec+30. NOTE: you can |
760 |
|
|
** pass a NULL _evec if eigenvectors aren't needed. |
761 |
|
|
** |
762 |
|
|
** does NOT use biff |
763 |
|
|
*/ |
764 |
|
|
int |
765 |
|
|
ell_6ms_eigensolve_d(double eval[6], double _evec[36], |
766 |
|
|
const double sym[21], const double eps) { |
767 |
|
|
/* char me[]="ell_6ms_eigensolve_d"; */ |
768 |
|
|
double mat[2][6][6], evec[2][6][6], sumon, sumoff, evtmp[12]; |
769 |
|
|
unsigned int cur, rrI, ccI, maxI[2], iter; |
770 |
|
|
|
771 |
|
|
if (!( eval && sym && eps >= 0 )) { |
772 |
|
|
return 1; |
773 |
|
|
} |
774 |
|
|
/* copy symmetric matrix sym[] into upper tris of mat[0][][] & mat[1][][] */ |
775 |
|
|
mat[0][0][0] = sym[ 0]; |
776 |
|
|
mat[0][0][1] = sym[ 1]; |
777 |
|
|
mat[0][0][2] = sym[ 2]; |
778 |
|
|
mat[0][0][3] = sym[ 3]; |
779 |
|
|
mat[0][0][4] = sym[ 4]; |
780 |
|
|
mat[0][0][5] = sym[ 5]; |
781 |
|
|
mat[0][1][1] = sym[ 6]; |
782 |
|
|
mat[0][1][2] = sym[ 7]; |
783 |
|
|
mat[0][1][3] = sym[ 8]; |
784 |
|
|
mat[0][1][4] = sym[ 9]; |
785 |
|
|
mat[0][1][5] = sym[10]; |
786 |
|
|
mat[0][2][2] = sym[11]; |
787 |
|
|
mat[0][2][3] = sym[12]; |
788 |
|
|
mat[0][2][4] = sym[13]; |
789 |
|
|
mat[0][2][5] = sym[14]; |
790 |
|
|
mat[0][3][3] = sym[15]; |
791 |
|
|
mat[0][3][4] = sym[16]; |
792 |
|
|
mat[0][3][5] = sym[17]; |
793 |
|
|
mat[0][4][4] = sym[18]; |
794 |
|
|
mat[0][4][5] = sym[19]; |
795 |
|
|
mat[0][5][5] = sym[20]; |
796 |
|
|
if (_evec) { |
797 |
|
|
/* initialize evec[0]; */ |
798 |
|
|
for (rrI=0; rrI<6; rrI++) { |
799 |
|
|
for (ccI=0; ccI<6; ccI++) { |
800 |
|
|
evec[0][ccI][rrI] = (rrI == ccI); |
801 |
|
|
} |
802 |
|
|
} |
803 |
|
|
} |
804 |
|
|
/* |
805 |
|
|
fprintf(stderr, "!%s(INIT): m = [", me); |
806 |
|
|
for (rrI=0; rrI<6; rrI++) { |
807 |
|
|
for (ccI=0; ccI<6; ccI++) { |
808 |
|
|
fprintf(stderr, "%f%s", |
809 |
|
|
(rrI <= ccI ? mat[0][rrI][ccI] : mat[0][ccI][rrI]), |
810 |
|
|
ccI<5 ? "," : (rrI<5 ? ";" : "]")); |
811 |
|
|
} |
812 |
|
|
fprintf(stderr, "\n"); |
813 |
|
|
} |
814 |
|
|
*/ |
815 |
|
|
maxI[0] = maxI[1] = UINT_MAX; /* quiet warnings about using maxI unset */ |
816 |
|
|
_maxI_sum_find(maxI, &sumon, &sumoff, mat[0]); |
817 |
|
|
cur = 1; /* fake out anticipating first line of loop */ |
818 |
|
|
iter = 0; |
819 |
|
|
while (sumoff/sumon > eps) { |
820 |
|
|
double th, tt, cc, ss; |
821 |
|
|
const unsigned int P = maxI[0]; |
822 |
|
|
const unsigned int Q = maxI[1]; |
823 |
|
|
//make sure that P and Q are within the bounds for mat[2][6][6] |
824 |
|
|
if(P >=6 || Q >= 6){ |
825 |
|
|
break; |
826 |
|
|
} |
827 |
|
|
/* |
828 |
|
|
fprintf(stderr, "!%s(%u): sumoff/sumon = %g/%g = %g > %g\n", me, iter, |
829 |
|
|
sumoff, sumon, sumoff/sumon, eps); |
830 |
|
|
*/ |
831 |
|
|
cur = 1 - cur; |
832 |
|
|
|
833 |
|
|
th = (mat[cur][Q][Q] - mat[cur][P][P])/(2*mat[cur][P][Q]); |
834 |
|
|
tt = (th > 0 ? +1 : -1)/(AIR_ABS(th) + sqrt(th*th + 1)); |
835 |
|
|
cc = 1/sqrt(tt*tt + 1); |
836 |
|
|
ss = cc*tt; |
837 |
|
|
/* |
838 |
|
|
fprintf(stderr, "!%s(%u): maxI = (P,Q) = (%u,%u) --> ss=%f, cc=%f\n", |
839 |
|
|
me, iter, P, Q, ss, cc); |
840 |
|
|
fprintf(stderr, " r = ["); |
841 |
|
|
for (rrI=0; rrI<6; rrI++) { |
842 |
|
|
for (ccI=0; ccI<6; ccI++) { |
843 |
|
|
fprintf(stderr, "%g%s", |
844 |
|
|
(rrI == ccI |
845 |
|
|
? (rrI == P || rrI == Q ? cc : 1.0) |
846 |
|
|
: (rrI == P && ccI == Q |
847 |
|
|
? ss |
848 |
|
|
: (rrI == Q && ccI == P |
849 |
|
|
? -ss |
850 |
|
|
: 0))), |
851 |
|
|
ccI<5 ? "," : (rrI<5 ? ";" : "]")); |
852 |
|
|
} |
853 |
|
|
fprintf(stderr, "\n"); |
854 |
|
|
} |
855 |
|
|
*/ |
856 |
|
|
/* initialize by copying whole matrix */ |
857 |
|
|
for (rrI=0; rrI<6; rrI++) { |
858 |
|
|
for (ccI=rrI; ccI<6; ccI++) { |
859 |
|
|
mat[1-cur][rrI][ccI] = mat[cur][rrI][ccI]; |
860 |
|
|
} |
861 |
|
|
} |
862 |
|
|
/* perform Jacobi rotation */ |
863 |
|
|
for (rrI=0; rrI<P; rrI++) { |
864 |
|
|
mat[1-cur][rrI][P] = cc*mat[cur][rrI][P] - ss*mat[cur][rrI][Q]; |
865 |
|
|
} |
866 |
|
|
for (ccI=P+1; ccI<6; ccI++) { |
867 |
|
|
mat[1-cur][P][ccI] = cc*mat[cur][P][ccI] - ss*(Q <= ccI |
868 |
|
|
? mat[cur][Q][ccI] |
869 |
|
|
: mat[cur][ccI][Q]); |
870 |
|
|
} |
871 |
|
|
for (rrI=0; rrI<Q; rrI++) { |
872 |
|
|
mat[1-cur][rrI][Q] = ss*(rrI <= P |
873 |
|
|
? mat[cur][rrI][P] |
874 |
|
|
: mat[cur][P][rrI]) + cc*mat[cur][rrI][Q]; |
875 |
|
|
} |
876 |
|
|
for (ccI=Q+1; ccI<6; ccI++) { |
877 |
|
|
mat[1-cur][Q][ccI] = ss*mat[cur][P][ccI] + cc*mat[cur][Q][ccI]; |
878 |
|
|
} |
879 |
|
|
/* set special entries */ |
880 |
|
|
mat[1-cur][P][P] = mat[cur][P][P] - tt*mat[cur][P][Q]; |
881 |
|
|
mat[1-cur][Q][Q] = mat[cur][Q][Q] + tt*mat[cur][P][Q]; |
882 |
|
|
mat[1-cur][P][Q] = 0.0; |
883 |
|
|
if (_evec) { |
884 |
|
|
/* NOTE: the eigenvectors use transpose of indexing of mat */ |
885 |
|
|
/* start by copying all */ |
886 |
|
|
for (rrI=0; rrI<6; rrI++) { |
887 |
|
|
for (ccI=0; ccI<6; ccI++) { |
888 |
|
|
evec[1-cur][ccI][rrI] = evec[cur][ccI][rrI]; |
889 |
|
|
} |
890 |
|
|
} |
891 |
|
|
for (rrI=0; rrI<6; rrI++) { |
892 |
|
|
evec[1-cur][P][rrI] = cc*evec[cur][P][rrI] - ss*evec[cur][Q][rrI]; |
893 |
|
|
evec[1-cur][Q][rrI] = ss*evec[cur][P][rrI] + cc*evec[cur][Q][rrI]; |
894 |
|
|
} |
895 |
|
|
} |
896 |
|
|
|
897 |
|
|
_maxI_sum_find(maxI, &sumon, &sumoff, mat[1-cur]); |
898 |
|
|
|
899 |
|
|
/* |
900 |
|
|
fprintf(stderr, "!%s(%u): m = [", me, iter); |
901 |
|
|
for (rrI=0; rrI<6; rrI++) { |
902 |
|
|
for (ccI=0; ccI<6; ccI++) { |
903 |
|
|
fprintf(stderr, "%f%s", |
904 |
|
|
(rrI <= ccI ? mat[1-cur][rrI][ccI] : mat[1-cur][ccI][rrI]), |
905 |
|
|
ccI<5 ? "," : (rrI<5 ? ";" : "]")); |
906 |
|
|
} |
907 |
|
|
fprintf(stderr, "\n"); |
908 |
|
|
} |
909 |
|
|
*/ |
910 |
|
|
iter++; |
911 |
|
|
} |
912 |
|
|
/* 1-cur is index of final solution */ |
913 |
|
|
|
914 |
|
|
/* sort evals */ |
915 |
|
|
for (ccI=0; ccI<6; ccI++) { |
916 |
|
|
evtmp[0 + 2*ccI] = mat[1-cur][ccI][ccI]; |
917 |
|
|
evtmp[1 + 2*ccI] = ccI; |
918 |
|
|
} |
919 |
|
|
qsort(evtmp, 6, 2*sizeof(double), _compar); |
920 |
|
|
|
921 |
|
|
/* copy out solution */ |
922 |
|
|
for (ccI=0; ccI<6; ccI++) { |
923 |
|
|
eval[ccI] = evtmp[0 + 2*ccI]; |
924 |
|
|
if (_evec) { |
925 |
|
|
unsigned eeI; |
926 |
|
|
for (rrI=0; rrI<6; rrI++) { |
927 |
|
|
eeI = AIR_CAST(unsigned int, evtmp[1 + 2*ccI]); |
928 |
|
|
_evec[rrI + 6*ccI] = evec[1-cur][eeI][rrI]; |
929 |
|
|
} |
930 |
|
|
} |
931 |
|
|
} |
932 |
|
|
|
933 |
|
|
return 0; |
934 |
|
|
} |