1 |
|
|
/* |
2 |
|
|
Teem: Tools to process and visualize scientific data and images . |
3 |
|
|
Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 |
|
|
Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 |
|
|
Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 |
|
|
|
7 |
|
|
This library is free software; you can redistribute it and/or |
8 |
|
|
modify it under the terms of the GNU Lesser General Public License |
9 |
|
|
(LGPL) as published by the Free Software Foundation; either |
10 |
|
|
version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
The terms of redistributing and/or modifying this software also |
12 |
|
|
include exceptions to the LGPL that facilitate static linking. |
13 |
|
|
|
14 |
|
|
This library is distributed in the hope that it will be useful, |
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 |
|
|
Lesser General Public License for more details. |
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU Lesser General Public License |
20 |
|
|
along with this library; if not, write to Free Software Foundation, Inc., |
21 |
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "ell.h" |
26 |
|
|
|
27 |
|
|
void |
28 |
|
|
ell_4v_norm_f(float bv[4], const float av[4]) { |
29 |
|
|
float len; |
30 |
|
|
|
31 |
|
|
len = AIR_CAST(float, ELL_4V_LEN(av)); |
32 |
|
|
ELL_4V_SCALE(bv, 1.0f/len, av); |
33 |
|
|
return; |
34 |
|
|
} |
35 |
|
|
|
36 |
|
|
#define PERP \ |
37 |
|
|
idx = 0; \ |
38 |
|
|
if (b[0]*b[0] < b[1]*b[1]) \ |
39 |
|
|
idx = 1; \ |
40 |
|
|
if (b[idx]*b[idx] < b[2]*b[2]) \ |
41 |
|
|
idx = 2; \ |
42 |
|
|
switch (idx) { \ |
43 |
|
|
case 0: \ |
44 |
|
|
ELL_3V_SET(a, b[1] - b[2], -b[0], b[0]); \ |
45 |
|
|
break; \ |
46 |
|
|
case 1: \ |
47 |
|
|
ELL_3V_SET(a, -b[1], b[0] - b[2], b[1]); \ |
48 |
|
|
break; \ |
49 |
|
|
case 2: \ |
50 |
|
|
ELL_3V_SET(a, -b[2], b[2], b[0] - b[1]); \ |
51 |
|
|
break; \ |
52 |
|
|
} |
53 |
|
|
|
54 |
|
|
/* |
55 |
|
|
******** ell_3v_perp_f() |
56 |
|
|
** |
57 |
|
|
** Given a 3-vector, produce one which is perpendicular. |
58 |
|
|
** Output length won't be same as input length, but it will always |
59 |
|
|
** be non-zero, if input length is non-zero. This does NOT try to |
60 |
|
|
** produce a unit-length vector, regardless of the length of the input. |
61 |
|
|
*/ |
62 |
|
|
void |
63 |
|
|
ell_3v_perp_f(float a[3], const float b[3]) { |
64 |
|
|
int idx; |
65 |
|
|
PERP; |
66 |
|
|
} |
67 |
|
|
|
68 |
|
|
/* |
69 |
|
|
******** ell_3v_perp_d() |
70 |
|
|
** |
71 |
|
|
** same as above, but for doubles |
72 |
|
|
*/ |
73 |
|
|
void |
74 |
|
|
ell_3v_perp_d(double a[3], const double b[3]) { |
75 |
|
|
int idx; |
76 |
✓✓✓✓ ✓✓✓✓
|
552 |
PERP; |
77 |
|
80 |
} |
78 |
|
|
|
79 |
|
|
void |
80 |
|
|
ell_3mv_mul_f(float v2[3], const float m[9], const float v1[3]) { |
81 |
|
|
float tmp[3]; |
82 |
|
|
|
83 |
|
|
ELL_3MV_MUL(tmp, m, v1); |
84 |
|
|
ELL_3V_COPY(v2, tmp); |
85 |
|
|
} |
86 |
|
|
|
87 |
|
|
void |
88 |
|
|
ell_3mv_mul_d(double v2[3], const double m[9], const double v1[3]) { |
89 |
|
|
double tmp[3]; |
90 |
|
|
|
91 |
|
2099810 |
ELL_3MV_MUL(tmp, m, v1); |
92 |
|
1049905 |
ELL_3V_COPY(v2, tmp); |
93 |
|
1049905 |
} |
94 |
|
|
|
95 |
|
|
void |
96 |
|
|
ell_4mv_mul_f(float v2[4], const float m[16], const float v1[4]) { |
97 |
|
|
float tmp[4]; |
98 |
|
|
|
99 |
|
|
ELL_4MV_MUL(tmp, m, v1); |
100 |
|
|
ELL_4V_COPY(v2, tmp); |
101 |
|
|
} |
102 |
|
|
|
103 |
|
|
void |
104 |
|
|
ell_4mv_mul_d(double v2[4], const double m[16], const double v1[4]) { |
105 |
|
|
double tmp[4]; |
106 |
|
|
|
107 |
|
|
ELL_4MV_MUL(tmp, m, v1); |
108 |
|
|
ELL_4V_COPY(v2, tmp); |
109 |
|
|
} |
110 |
|
|
|
111 |
|
|
/* |
112 |
|
|
** hat tip to http://www.plunk.org/~hatch/rightway.php |
113 |
|
|
*/ |
114 |
|
|
float |
115 |
|
|
ell_3v_angle_f(const float _uu[3], const float _vv[3]) { |
116 |
|
|
float tmp[3], len, uu[3], vv[3], ret; |
117 |
|
|
|
118 |
|
|
ELL_3V_NORM_TT(uu, float, _uu, len); |
119 |
|
|
ELL_3V_NORM_TT(vv, float, _vv, len); |
120 |
|
|
if (ELL_3V_DOT(uu, vv) < 0.0) { |
121 |
|
|
ELL_3V_ADD2(tmp, uu, vv); |
122 |
|
|
ret = AIR_CAST(float, AIR_PI - 2*asin(ELL_3V_LEN(tmp)/2.0)); |
123 |
|
|
} else { |
124 |
|
|
ELL_3V_SUB(tmp, uu, vv); |
125 |
|
|
ret = AIR_CAST(float, 2*asin(ELL_3V_LEN(tmp)/2.0)); |
126 |
|
|
} |
127 |
|
|
return ret; |
128 |
|
|
} |
129 |
|
|
|
130 |
|
|
/* HEY: copy and paste */ |
131 |
|
|
double |
132 |
|
|
ell_3v_angle_d(const double _uu[3], const double _vv[3]) { |
133 |
|
|
double tmp[3], len, uu[3], vv[3], ret; |
134 |
|
|
|
135 |
|
345144 |
ELL_3V_NORM(uu, _uu, len); |
136 |
|
172572 |
ELL_3V_NORM(vv, _vv, len); |
137 |
✓✓ |
172572 |
if (ELL_3V_DOT(uu, vv) < 0.0) { |
138 |
|
78978 |
ELL_3V_ADD2(tmp, uu, vv); |
139 |
|
78978 |
ret = AIR_PI - 2*asin(ELL_3V_LEN(tmp)/2.0); |
140 |
|
78978 |
} else { |
141 |
|
93594 |
ELL_3V_SUB(tmp, uu, vv); |
142 |
|
93594 |
ret = 2*asin(ELL_3V_LEN(tmp)/2.0); |
143 |
|
|
} |
144 |
|
172572 |
return ret; |
145 |
|
|
} |
146 |
|
|
|
147 |
|
|
/* HEY: copy and paste */ |
148 |
|
|
float |
149 |
|
|
ell_2v_angle_f(const float _uu[2], const float _vv[2]) { |
150 |
|
|
float tmp[2], len, uu[2], vv[2], ret; |
151 |
|
|
|
152 |
|
|
ELL_2V_NORM_TT(uu, float, _uu, len); |
153 |
|
|
ELL_2V_NORM_TT(vv, float, _vv, len); |
154 |
|
|
if (ELL_2V_DOT(uu, vv) < 0.0) { |
155 |
|
|
ELL_2V_ADD2(tmp, uu, vv); |
156 |
|
|
ret = AIR_CAST(float, AIR_PI - 2*asin(ELL_2V_LEN(tmp)/2.0)); |
157 |
|
|
} else { |
158 |
|
|
ELL_2V_SUB(tmp, uu, vv); |
159 |
|
|
ret = AIR_CAST(float, 2*asin(ELL_2V_LEN(tmp)/2.0)); |
160 |
|
|
} |
161 |
|
|
return ret; |
162 |
|
|
} |
163 |
|
|
|
164 |
|
|
/* HEY: copy and paste */ |
165 |
|
|
double |
166 |
|
|
ell_2v_angle_d(const double _uu[2], const double _vv[2]) { |
167 |
|
|
double tmp[2], len, uu[2], vv[2], ret; |
168 |
|
|
|
169 |
|
|
ELL_2V_NORM(uu, _uu, len); |
170 |
|
|
ELL_2V_NORM(vv, _vv, len); |
171 |
|
|
if (ELL_2V_DOT(uu, vv) < 0.0) { |
172 |
|
|
ELL_2V_ADD2(tmp, uu, vv); |
173 |
|
|
ret = AIR_PI - 2*asin(ELL_2V_LEN(tmp)/2.0); |
174 |
|
|
} else { |
175 |
|
|
ELL_2V_SUB(tmp, uu, vv); |
176 |
|
|
ret = 2*asin(ELL_2V_LEN(tmp)/2.0); |
177 |
|
|
} |
178 |
|
|
return ret; |
179 |
|
|
} |
180 |
|
|
|
181 |
|
|
/* |
182 |
|
|
** input vectors have to be normalized! |
183 |
|
|
*/ |
184 |
|
|
double |
185 |
|
|
ell_3v_area_spherical_d(const double avec[3], |
186 |
|
|
const double bvec[3], |
187 |
|
|
const double cvec[3]) { |
188 |
|
|
double axb[3], bxc[3], cxa[3], A, B, C, tmp; |
189 |
|
|
|
190 |
|
|
ELL_3V_CROSS(axb, avec, bvec); |
191 |
|
|
ELL_3V_CROSS(bxc, bvec, cvec); |
192 |
|
|
ELL_3V_CROSS(cxa, cvec, avec); |
193 |
|
|
ELL_3V_NORM(axb, axb, tmp); |
194 |
|
|
ELL_3V_NORM(bxc, bxc, tmp); |
195 |
|
|
ELL_3V_NORM(cxa, cxa, tmp); |
196 |
|
|
A = AIR_PI - ell_3v_angle_d(axb, cxa); |
197 |
|
|
B = AIR_PI - ell_3v_angle_d(bxc, axb); |
198 |
|
|
C = AIR_PI - ell_3v_angle_d(cxa, bxc); |
199 |
|
|
return A + B + C - AIR_PI; |
200 |
|
|
} |
201 |
|
|
|
202 |
|
|
/* |
203 |
|
|
** all input vectors {a,b,c}vec, dir must be normalized |
204 |
|
|
*/ |
205 |
|
|
void |
206 |
|
|
ell_3v_barycentric_spherical_d(double bary[3], |
207 |
|
|
const double av[3], |
208 |
|
|
const double bv[3], |
209 |
|
|
const double cv[3], |
210 |
|
|
const double vv[3]) { |
211 |
|
|
double sum; |
212 |
|
|
|
213 |
|
|
bary[0] = ell_3v_area_spherical_d(vv, bv, cv); |
214 |
|
|
bary[1] = ell_3v_area_spherical_d(vv, cv, av); |
215 |
|
|
bary[2] = ell_3v_area_spherical_d(vv, av, bv); |
216 |
|
|
sum = bary[0] + bary[1] + bary[2]; |
217 |
|
|
if (sum) { |
218 |
|
|
ELL_3V_SCALE(bary, 1.0/sum, bary); |
219 |
|
|
} |
220 |
|
|
return; |
221 |
|
|
} |