1 |
|
|
/* |
2 |
|
|
Teem: Tools to process and visualize scientific data and images . |
3 |
|
|
Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 |
|
|
Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 |
|
|
Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 |
|
|
|
7 |
|
|
This library is free software; you can redistribute it and/or |
8 |
|
|
modify it under the terms of the GNU Lesser General Public License |
9 |
|
|
(LGPL) as published by the Free Software Foundation; either |
10 |
|
|
version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
The terms of redistributing and/or modifying this software also |
12 |
|
|
include exceptions to the LGPL that facilitate static linking. |
13 |
|
|
|
14 |
|
|
This library is distributed in the hope that it will be useful, |
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 |
|
|
Lesser General Public License for more details. |
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU Lesser General Public License |
20 |
|
|
along with this library; if not, write to Free Software Foundation, Inc., |
21 |
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
#include "gage.h" |
25 |
|
|
#include "privateGage.h" |
26 |
|
|
|
27 |
|
|
/* HEY copied from ten.h */ |
28 |
|
|
#define TEN_M2T(t, m) ( \ |
29 |
|
|
(t)[1] = (m)[0], \ |
30 |
|
|
(t)[2] = ((m)[1]+(m)[3])/2.0, \ |
31 |
|
|
(t)[3] = ((m)[2]+(m)[6])/2.0, \ |
32 |
|
|
(t)[4] = (m)[4], \ |
33 |
|
|
(t)[5] = ((m)[5]+(m)[7])/2.0, \ |
34 |
|
|
(t)[6] = (m)[8]) |
35 |
|
|
#define TEN_T_SCALE(a, s, b) ( \ |
36 |
|
|
(a)[0] = (b)[0], \ |
37 |
|
|
(a)[1] = (s)*(b)[1], \ |
38 |
|
|
(a)[2] = (s)*(b)[2], \ |
39 |
|
|
(a)[3] = (s)*(b)[3], \ |
40 |
|
|
(a)[4] = (s)*(b)[4], \ |
41 |
|
|
(a)[5] = (s)*(b)[5], \ |
42 |
|
|
(a)[6] = (s)*(b)[6]) |
43 |
|
|
|
44 |
|
|
void |
45 |
|
|
_gageSclAnswer(gageContext *ctx, gagePerVolume *pvl) { |
46 |
|
1789650 |
char me[]="_gageSclAnswer"; |
47 |
|
|
double gmag=0, *hess, *norm, *gvec, *gten, *k1, *k2, curv=0, |
48 |
|
|
sHess[9]={0,0,0,0,0,0,0,0,0}; |
49 |
|
894825 |
double tmpMat[9], tmpVec[3], hevec[9], heval[3]; |
50 |
|
894825 |
double len, gp1[3], gp2[3], *nPerp, ncTen[9], nProj[9]={0,0,0,0,0,0,0,0,0}; |
51 |
|
|
double alpha = 0.5; |
52 |
|
|
double beta = 0.5; |
53 |
|
|
double _gamma = 5; |
54 |
|
|
double cc = 1e-6; |
55 |
|
|
#define FD_MEDIAN_MAX 16 |
56 |
|
|
int fd, nidx, xi, yi, zi; |
57 |
|
894825 |
double *fw, iv3wght[2*FD_MEDIAN_MAX*FD_MEDIAN_MAX*FD_MEDIAN_MAX], |
58 |
|
|
wghtSum, wght; |
59 |
|
|
|
60 |
|
|
/* convenience pointers for work below */ |
61 |
|
894825 |
hess = pvl->directAnswer[gageSclHessian]; |
62 |
|
894825 |
gvec = pvl->directAnswer[gageSclGradVec]; |
63 |
|
894825 |
norm = pvl->directAnswer[gageSclNormal]; |
64 |
|
894825 |
nPerp = pvl->directAnswer[gageSclNPerp]; |
65 |
|
894825 |
gten = pvl->directAnswer[gageSclGeomTens]; |
66 |
|
894825 |
k1 = pvl->directAnswer[gageSclK1]; |
67 |
|
894825 |
k2 = pvl->directAnswer[gageSclK2]; |
68 |
|
|
|
69 |
✓✗ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclValue)) { |
70 |
|
|
/* done if doV */ |
71 |
✗✓ |
894825 |
if (ctx->verbose > 2) { |
72 |
|
|
fprintf(stderr, "%s: val = % 15.7f\n", me, |
73 |
|
|
(double)(pvl->directAnswer[gageSclValue][0])); |
74 |
|
|
} |
75 |
|
|
} |
76 |
✓✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGradVec)) { |
77 |
|
|
/* done if doD1 */ |
78 |
✗✓ |
752905 |
if (ctx->verbose > 2) { |
79 |
|
|
fprintf(stderr, "%s: gvec = ", me); |
80 |
|
|
ell_3v_print_d(stderr, gvec); |
81 |
|
|
} |
82 |
|
|
} |
83 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGradMag)) { |
84 |
|
|
/* this is the true value of gradient magnitude */ |
85 |
|
|
gmag = pvl->directAnswer[gageSclGradMag][0] = sqrt(ELL_3V_DOT(gvec, gvec)); |
86 |
|
|
} |
87 |
|
|
|
88 |
|
|
/* NB: it would seem that gageParmGradMagMin is completely ignored . . . */ |
89 |
|
|
|
90 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclNormal)) { |
91 |
|
|
if (gmag) { |
92 |
|
|
ELL_3V_SCALE(norm, 1/gmag, gvec); |
93 |
|
|
/* polishing |
94 |
|
|
len = sqrt(ELL_3V_DOT(norm, norm)); |
95 |
|
|
ELL_3V_SCALE(norm, 1/len, norm); |
96 |
|
|
*/ |
97 |
|
|
} else { |
98 |
|
|
ELL_3V_COPY(norm, gageZeroNormal); |
99 |
|
|
} |
100 |
|
|
} |
101 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclNProj)) { |
102 |
|
|
ELL_3MV_OUTER(pvl->directAnswer[gageSclNProj], norm, norm); |
103 |
|
|
} |
104 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclNPerp)) { |
105 |
|
|
/* nPerp = I - outer(norm, norm) */ |
106 |
|
|
/* NB: this sets both nPerp and nProj */ |
107 |
|
|
ELL_3MV_OUTER(nProj, norm, norm); |
108 |
|
|
ELL_3M_SCALE(nPerp, -1, nProj); |
109 |
|
|
nPerp[0] += 1; |
110 |
|
|
nPerp[4] += 1; |
111 |
|
|
nPerp[8] += 1; |
112 |
|
|
} |
113 |
✓✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessian)) { |
114 |
|
|
/* done if doD2 */ |
115 |
✗✓ |
752905 |
if (ctx->verbose > 2) { |
116 |
|
|
fprintf(stderr, "%s: hess = \n", me); |
117 |
|
|
ell_3m_print_d(stderr, hess); |
118 |
|
|
} |
119 |
|
|
} |
120 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessianTen)) { |
121 |
|
|
pvl->directAnswer[gageSclHessianTen][0] = 1.0; |
122 |
|
|
TEN_M2T(pvl->directAnswer[gageSclHessianTen], |
123 |
|
|
pvl->directAnswer[gageSclHessian]); |
124 |
|
|
} |
125 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclLaplacian)) { |
126 |
|
|
pvl->directAnswer[gageSclLaplacian][0] = hess[0] + hess[4] + hess[8]; |
127 |
|
|
if (ctx->verbose > 2) { |
128 |
|
|
fprintf(stderr, "%s: lapl = %g + %g + %g = %g\n", me, |
129 |
|
|
hess[0], hess[4], hess[8], |
130 |
|
|
pvl->directAnswer[gageSclLaplacian][0]); |
131 |
|
|
} |
132 |
|
|
} |
133 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessFrob)) { |
134 |
|
|
pvl->directAnswer[gageSclHessFrob][0] = ELL_3M_FROB(hess); |
135 |
|
|
} |
136 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessEval)) { |
137 |
|
|
if (ctx->parm.twoDimZeroZ) { |
138 |
|
|
ell_3m2sub_eigensolve_d(heval, hevec, hess); |
139 |
|
|
} else { |
140 |
|
|
/* HEY: look at the return value for root multiplicity? */ |
141 |
|
|
ell_3m_eigensolve_d(heval, hevec, hess, AIR_TRUE); |
142 |
|
|
} |
143 |
|
|
ELL_3V_COPY(pvl->directAnswer[gageSclHessEval], heval); |
144 |
|
|
} |
145 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessEvec)) { |
146 |
|
|
ELL_3M_COPY(pvl->directAnswer[gageSclHessEvec], hevec); |
147 |
|
|
} |
148 |
|
|
#if 1 |
149 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessRidgeness)) { |
150 |
|
|
double A, B, S; |
151 |
|
|
if (heval[1] >0 || heval[2]>0) { |
152 |
|
|
pvl->directAnswer[gageSclHessRidgeness][0] = 0; |
153 |
|
|
} |
154 |
|
|
else if (AIR_ABS(heval[1])<1e-10 || AIR_ABS(heval[2])<1e-10) { |
155 |
|
|
pvl->directAnswer[gageSclHessRidgeness][0] = 0; |
156 |
|
|
} |
157 |
|
|
else { |
158 |
|
|
double *ans; |
159 |
|
|
A = AIR_ABS(heval[1])/AIR_ABS(heval[2]); |
160 |
|
|
B = AIR_ABS(heval[0])/sqrt(AIR_ABS(heval[1]*heval[2])); |
161 |
|
|
S = sqrt(heval[0]*heval[0] + heval[1]*heval[1] + heval[2]*heval[2]); |
162 |
|
|
ans = pvl->directAnswer[gageSclHessRidgeness]; |
163 |
|
|
ans[0] = (1-exp(-A*A/(2*alpha*alpha))) * |
164 |
|
|
exp(-B*B/(2*beta*beta)) * |
165 |
|
|
(1-exp(-S*S/(2*_gamma*_gamma))) * |
166 |
|
|
exp(-2*cc*cc/(AIR_ABS(heval[1])*heval[2]*heval[2])); |
167 |
|
|
} |
168 |
|
|
} |
169 |
|
|
#else |
170 |
|
|
/* alternative implementation by GLK, based on directly following |
171 |
|
|
Frangi text. Only significant difference from above is a |
172 |
|
|
discontinuity at heval[0] = -heval[1] */ |
173 |
|
|
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessRidgeness)) { |
174 |
|
|
double ev[4], tmp; |
175 |
|
|
ELL_3V_COPY(ev+1, heval); |
176 |
|
|
if (AIR_ABS(ev[2]) > AIR_ABS(ev[3])) { ELL_SWAP2(ev[2], ev[3], tmp); } |
177 |
|
|
if (AIR_ABS(ev[1]) > AIR_ABS(ev[2])) { ELL_SWAP2(ev[1], ev[2], tmp); } |
178 |
|
|
if (AIR_ABS(ev[2]) > AIR_ABS(ev[3])) { ELL_SWAP2(ev[2], ev[3], tmp); } |
179 |
|
|
if (ev[2] > 0 || ev[3] > 0) { |
180 |
|
|
pvl->directAnswer[gageSclHessRidgeness][0] = 0; |
181 |
|
|
} else { |
182 |
|
|
double a1, a2, a3, RB, RA, SS, fa, fb, fg, aa, bb, gg, frangi; |
183 |
|
|
a1 = AIR_ABS(ev[1]); |
184 |
|
|
a2 = AIR_ABS(ev[2]); |
185 |
|
|
a3 = AIR_ABS(ev[3]); |
186 |
|
|
RB = a1/sqrt(a2*a3); |
187 |
|
|
RA = a2/a3; |
188 |
|
|
SS = sqrt(a1*a1 + a2*a2 + a3*a3); |
189 |
|
|
aa = bb = 0.5; |
190 |
|
|
gg = 1; |
191 |
|
|
fa = 1 - exp(-RA*RA/(2*aa*aa)); |
192 |
|
|
fb = exp(-RB*RB/(2*bb*bb)); |
193 |
|
|
fg = 1 - exp(-SS*SS/(2*gg*gg)); |
194 |
|
|
frangi = fa*fb*fg; |
195 |
|
|
if (!AIR_EXISTS(frangi)) { frangi = 0.0; } |
196 |
|
|
pvl->directAnswer[gageSclHessRidgeness][0] = frangi; |
197 |
|
|
} |
198 |
|
|
} |
199 |
|
|
#endif |
200 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessValleyness)) { |
201 |
|
|
double A, B, S; |
202 |
|
|
if (heval[0] <0 || heval[1]<0) { |
203 |
|
|
pvl->directAnswer[gageSclHessValleyness][0] = 0; |
204 |
|
|
} |
205 |
|
|
else if (AIR_ABS(heval[0])<1e-10 || AIR_ABS(heval[1])<1e-10) { |
206 |
|
|
pvl->directAnswer[gageSclHessValleyness][0] = 0; |
207 |
|
|
} |
208 |
|
|
else { |
209 |
|
|
double *ans; |
210 |
|
|
A = AIR_ABS(heval[1])/AIR_ABS(heval[0]); |
211 |
|
|
B = AIR_ABS(heval[2])/sqrt(AIR_ABS(heval[1]*heval[0])); |
212 |
|
|
S = sqrt(heval[0]*heval[0] + heval[1]*heval[1] + heval[2]*heval[2]); |
213 |
|
|
ans = pvl->directAnswer[gageSclHessValleyness]; |
214 |
|
|
ans[0] = (1-exp(-A*A/(2*alpha*alpha))) * |
215 |
|
|
exp(-B*B/(2*beta*beta)) * |
216 |
|
|
(1-exp(-S*S/(2*_gamma*_gamma))) * |
217 |
|
|
exp(-2*cc*cc/(AIR_ABS(heval[1])*heval[0]*heval[0])); |
218 |
|
|
} |
219 |
|
|
} |
220 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessDotPeakness)) { |
221 |
|
|
#define OSQT 0.57735026918962576451 |
222 |
|
|
double neval[3], hlen, pness, |
223 |
|
|
peak[3] = {-OSQT, -OSQT, -OSQT}; |
224 |
|
|
ELL_3V_NORM(neval, heval, hlen); |
225 |
|
|
if (!hlen) { |
226 |
|
|
pness = 0; |
227 |
|
|
} else { |
228 |
|
|
pness = ELL_3V_DOT(peak, neval); |
229 |
|
|
pness = AIR_AFFINE(-1, pness, 1, 0, 1); |
230 |
|
|
pvl->directAnswer[gageSclHessDotPeakness][0] = pness; |
231 |
|
|
} |
232 |
|
|
#undef OSQT |
233 |
|
|
} |
234 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclHessMode)) { |
235 |
|
|
pvl->directAnswer[gageSclHessMode][0] = airMode3_d(heval); |
236 |
|
|
} |
237 |
|
|
|
238 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageScl2ndDD)) { |
239 |
|
|
ELL_3MV_MUL(tmpVec, hess, norm); |
240 |
|
|
pvl->directAnswer[gageScl2ndDD][0] = ELL_3V_DOT(norm, tmpVec); |
241 |
|
|
} |
242 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGeomTens)) { |
243 |
|
|
if (gmag > ctx->parm.gradMagCurvMin) { |
244 |
|
|
/* parm.curvNormalSide applied here to determine the sense of the |
245 |
|
|
normal when doing all curvature calculations */ |
246 |
|
|
ELL_3M_SCALE(sHess, -(ctx->parm.curvNormalSide)/gmag, hess); |
247 |
|
|
|
248 |
|
|
/* gten = nPerp * sHess * nPerp */ |
249 |
|
|
ELL_3M_MUL(tmpMat, sHess, nPerp); |
250 |
|
|
ELL_3M_MUL(gten, nPerp, tmpMat); |
251 |
|
|
|
252 |
|
|
if (ctx->verbose > 2) { |
253 |
|
|
fprintf(stderr, "%s: gten: \n", me); |
254 |
|
|
ell_3m_print_d(stderr, gten); |
255 |
|
|
ELL_3MV_MUL(tmpVec, gten, norm); |
256 |
|
|
len = ELL_3V_LEN(tmpVec); |
257 |
|
|
fprintf(stderr, "%s: should be small: %30.15f\n", me, (double)len); |
258 |
|
|
ell_3v_perp_d(gp1, norm); |
259 |
|
|
ELL_3MV_MUL(tmpVec, gten, gp1); |
260 |
|
|
len = ELL_3V_LEN(tmpVec); |
261 |
|
|
fprintf(stderr, "%s: should be bigger: %30.15f\n", me, (double)len); |
262 |
|
|
ELL_3V_CROSS(gp2, gp1, norm); |
263 |
|
|
ELL_3MV_MUL(tmpVec, gten, gp2); |
264 |
|
|
len = ELL_3V_LEN(tmpVec); |
265 |
|
|
fprintf(stderr, "%s: should (also) be bigger: %30.15f\n", |
266 |
|
|
me, (double)len); |
267 |
|
|
} |
268 |
|
|
} else { |
269 |
|
|
ELL_3M_ZERO_SET(gten); |
270 |
|
|
} |
271 |
|
|
} |
272 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGeomTensTen)) { |
273 |
|
|
pvl->directAnswer[gageSclGeomTensTen][0] = 1.0; |
274 |
|
|
TEN_M2T(pvl->directAnswer[gageSclGeomTensTen], |
275 |
|
|
pvl->directAnswer[gageSclGeomTens]); |
276 |
|
|
TEN_T_SCALE(pvl->directAnswer[gageSclGeomTensTen], -1, |
277 |
|
|
pvl->directAnswer[gageSclGeomTensTen]); |
278 |
|
|
} |
279 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclTotalCurv)) { |
280 |
|
|
curv = pvl->directAnswer[gageSclTotalCurv][0] = ELL_3M_FROB(gten); |
281 |
|
|
} |
282 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclShapeTrace)) { |
283 |
|
|
pvl->directAnswer[gageSclShapeTrace][0] = (curv |
284 |
|
|
? ELL_3M_TRACE(gten)/curv |
285 |
|
|
: 0); |
286 |
|
|
} |
287 |
✓✗✗✓
|
1789650 |
if ( (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclK1)) || |
288 |
|
894825 |
(GAGE_QUERY_ITEM_TEST(pvl->query, gageSclK2)) ){ |
289 |
|
|
double T, N, D; |
290 |
|
|
T = ELL_3M_TRACE(gten); |
291 |
|
|
N = curv; |
292 |
|
|
D = 2*N*N - T*T; |
293 |
|
|
/* |
294 |
|
|
if (D < -0.0000001) { |
295 |
|
|
fprintf(stderr, "%s: %g %g\n", me, T, N); |
296 |
|
|
fprintf(stderr, "%s: !!! D curv determinant % 22.10f < 0.0\n", me, D); |
297 |
|
|
fprintf(stderr, "%s: gten: \n", me); |
298 |
|
|
ell_3m_print_d(stderr, gten); |
299 |
|
|
} |
300 |
|
|
*/ |
301 |
|
|
D = AIR_MAX(D, 0); |
302 |
|
|
D = sqrt(D); |
303 |
|
|
k1[0] = 0.5*(T + D); |
304 |
|
|
k2[0] = 0.5*(T - D); |
305 |
|
|
} |
306 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclMeanCurv)) { |
307 |
|
|
pvl->directAnswer[gageSclMeanCurv][0] = (*k1 + *k2)/2; |
308 |
|
|
} |
309 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclGaussCurv)) { |
310 |
|
|
pvl->directAnswer[gageSclGaussCurv][0] = (*k1)*(*k2); |
311 |
|
|
} |
312 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclShapeIndex)) { |
313 |
|
|
pvl->directAnswer[gageSclShapeIndex][0] = |
314 |
|
|
-(2/AIR_PI)*atan2(*k1 + *k2, *k1 - *k2); |
315 |
|
|
} |
316 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclCurvDir1)) { |
317 |
|
|
/* HEY: this only works when K1, K2, 0 are all well mutually distinct, |
318 |
|
|
since these are the eigenvalues of the geometry tensor, and this |
319 |
|
|
code assumes that the eigenspaces are all one-dimensional */ |
320 |
|
|
ELL_3M_COPY(tmpMat, gten); |
321 |
|
|
ELL_3M_DIAG_SET(tmpMat, gten[0] - *k1, gten[4]- *k1, gten[8] - *k1); |
322 |
|
|
ell_3m_1d_nullspace_d(tmpVec, tmpMat); |
323 |
|
|
ELL_3V_COPY(pvl->directAnswer[gageSclCurvDir1], tmpVec); |
324 |
|
|
} |
325 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclCurvDir2)) { |
326 |
|
|
/* HEY: this only works when K1, K2, 0 are all well mutually distinct, |
327 |
|
|
since these are the eigenvalues of the geometry tensor, and this |
328 |
|
|
code assumes that the eigenspaces are all one-dimensional */ |
329 |
|
|
ELL_3M_COPY(tmpMat, gten); |
330 |
|
|
ELL_3M_DIAG_SET(tmpMat, gten[0] - *k2, gten[4] - *k2, gten[8] - *k2); |
331 |
|
|
ell_3m_1d_nullspace_d(tmpVec, tmpMat); |
332 |
|
|
ELL_3V_COPY(pvl->directAnswer[gageSclCurvDir2], tmpVec); |
333 |
|
|
} |
334 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclFlowlineCurv)) { |
335 |
|
|
if (gmag >= ctx->parm.gradMagCurvMin) { |
336 |
|
|
/* because of the gageSclGeomTens prerequisite, sHess, nPerp, and |
337 |
|
|
nProj are all already set */ |
338 |
|
|
/* ncTen = nPerp * sHess * nProj */ |
339 |
|
|
ELL_3M_MUL(tmpMat, sHess, nProj); |
340 |
|
|
ELL_3M_MUL(ncTen, nPerp, tmpMat); |
341 |
|
|
} else { |
342 |
|
|
ELL_3M_ZERO_SET(ncTen); |
343 |
|
|
} |
344 |
|
|
/* there used to be a wrong extra sqrt() here */ |
345 |
|
|
pvl->directAnswer[gageSclFlowlineCurv][0] = ELL_3M_FROB(ncTen); |
346 |
|
|
} |
347 |
✗✓ |
894825 |
if (GAGE_QUERY_ITEM_TEST(pvl->query, gageSclMedian)) { |
348 |
|
|
/* this item is currently a complete oddball in that it does not |
349 |
|
|
benefit from anything done in the "filter" stage, which is in |
350 |
|
|
fact a waste of time if the query consists only of this item */ |
351 |
|
|
fd = 2*ctx->radius; |
352 |
|
|
if (fd > FD_MEDIAN_MAX) { |
353 |
|
|
fprintf(stderr, "%s: PANIC: current filter diameter = %d " |
354 |
|
|
"> FD_MEDIAN_MAX = %d\n", me, fd, FD_MEDIAN_MAX); |
355 |
|
|
exit(1); |
356 |
|
|
} |
357 |
|
|
fw = ctx->fw + fd*3*gageKernel00; |
358 |
|
|
/* HEY: this needs some optimization help */ |
359 |
|
|
wghtSum = 0; |
360 |
|
|
nidx = 0; |
361 |
|
|
for (xi=0; xi<fd; xi++) { |
362 |
|
|
for (yi=0; yi<fd; yi++) { |
363 |
|
|
for (zi=0; zi<fd; zi++) { |
364 |
|
|
iv3wght[0 + 2*nidx] = pvl->iv3[nidx]; |
365 |
|
|
iv3wght[1 + 2*nidx] = fw[xi + 0*fd]*fw[yi + 1*fd]*fw[zi + 2*fd]; |
366 |
|
|
wghtSum += iv3wght[1 + 2*nidx]; |
367 |
|
|
nidx++; |
368 |
|
|
} |
369 |
|
|
} |
370 |
|
|
} |
371 |
|
|
qsort(iv3wght, fd*fd*fd, 2*sizeof(double), nrrdValCompare[nrrdTypeDouble]); |
372 |
|
|
wght = 0; |
373 |
|
|
for (nidx=0; nidx<fd*fd*fd; nidx++) { |
374 |
|
|
wght += iv3wght[1 + 2*nidx]; |
375 |
|
|
if (wght > wghtSum/2) { |
376 |
|
|
break; |
377 |
|
|
} |
378 |
|
|
} |
379 |
|
|
pvl->directAnswer[gageSclMedian][0] = iv3wght[0 + 2*nidx]; |
380 |
|
|
} |
381 |
|
|
return; |
382 |
|
894825 |
} |
383 |
|
|
|
384 |
|
|
#undef TEN_M2T |
385 |
|
|
#undef TEN_T_SCALE |