1 |
|
|
/* |
2 |
|
|
Teem: Tools to process and visualize scientific data and images . |
3 |
|
|
Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 |
|
|
Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 |
|
|
Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 |
|
|
|
7 |
|
|
This library is free software; you can redistribute it and/or |
8 |
|
|
modify it under the terms of the GNU Lesser General Public License |
9 |
|
|
(LGPL) as published by the Free Software Foundation; either |
10 |
|
|
version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
The terms of redistributing and/or modifying this software also |
12 |
|
|
include exceptions to the LGPL that facilitate static linking. |
13 |
|
|
|
14 |
|
|
This library is distributed in the hope that it will be useful, |
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 |
|
|
Lesser General Public License for more details. |
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU Lesser General Public License |
20 |
|
|
along with this library; if not, write to Free Software Foundation, Inc., |
21 |
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
#include "nrrd.h" |
25 |
|
|
#include "privateNrrd.h" |
26 |
|
|
|
27 |
|
|
int |
28 |
|
|
_nrrdCM_median(const float *hist, float half) { |
29 |
|
|
float sum = 0; |
30 |
|
|
const float *hpt; |
31 |
|
|
|
32 |
|
|
hpt = hist; |
33 |
|
|
|
34 |
|
|
while(sum < half) |
35 |
|
|
sum += *hpt++; |
36 |
|
|
|
37 |
|
|
return AIR_CAST(int, hpt - 1 - hist); |
38 |
|
|
} |
39 |
|
|
|
40 |
|
|
int |
41 |
|
|
_nrrdCM_mode(const float *hist, int bins) { |
42 |
|
|
float max; |
43 |
|
|
int i, mi; |
44 |
|
|
|
45 |
|
|
mi = -1; |
46 |
|
|
max = 0; |
47 |
|
|
for (i=0; i<bins; i++) { |
48 |
|
|
if (hist[i] && (!max || hist[i] > max) ) { |
49 |
|
|
max = hist[i]; |
50 |
|
|
mi = i; |
51 |
|
|
} |
52 |
|
|
} |
53 |
|
|
|
54 |
|
|
return mi; |
55 |
|
|
} |
56 |
|
|
|
57 |
|
|
#define INDEX(nin, range, lup, idxIn, bins, val) ( \ |
58 |
|
|
val = (lup)((nin)->data, (idxIn)), \ |
59 |
|
|
airIndex((range)->min, (val), (range)->max, bins) \ |
60 |
|
|
) |
61 |
|
|
|
62 |
|
|
void |
63 |
|
|
_nrrdCM_printhist(const float *hist, int bins, const char *desc) { |
64 |
|
|
int i; |
65 |
|
|
|
66 |
|
|
printf("%s:\n", desc); |
67 |
|
|
for (i=0; i<bins; i++) { |
68 |
|
|
if (hist[i]) { |
69 |
|
|
printf(" %d: %g\n", i, hist[i]); |
70 |
|
|
} |
71 |
|
|
} |
72 |
|
|
} |
73 |
|
|
|
74 |
|
|
float * |
75 |
|
|
_nrrdCM_wtAlloc(int radius, float wght) { |
76 |
|
|
float *wt, sum; |
77 |
|
|
int diam, r; |
78 |
|
|
|
79 |
|
|
diam = 2*radius + 1; |
80 |
|
|
wt = (float *)calloc(diam, sizeof(float)); |
81 |
|
|
wt[radius] = 1.0; |
82 |
|
|
for (r=1; r<=radius; r++) { |
83 |
|
|
wt[radius+r] = AIR_CAST(float, pow(1.0/wght, r)); |
84 |
|
|
wt[radius-r] = AIR_CAST(float, pow(1.0/wght, r)); |
85 |
|
|
} |
86 |
|
|
sum = 0.0; |
87 |
|
|
for (r=0; r<diam; r++) { |
88 |
|
|
sum += wt[r]; |
89 |
|
|
} |
90 |
|
|
for (r=0; r<diam; r++) { |
91 |
|
|
wt[r] /= sum; |
92 |
|
|
} |
93 |
|
|
/* |
94 |
|
|
for (r=0; r<diam; r++) { |
95 |
|
|
fprintf(stderr, "!%s: wt[%d] = %g\n", "_nrrdCM_wtAlloc", r, wt[r]); |
96 |
|
|
} |
97 |
|
|
*/ |
98 |
|
|
return wt; |
99 |
|
|
} |
100 |
|
|
|
101 |
|
|
void |
102 |
|
|
_nrrdCheapMedian1D(Nrrd *nout, const Nrrd *nin, const NrrdRange *range, |
103 |
|
|
int radius, float wght, |
104 |
|
|
int bins, int mode, float *hist) { |
105 |
|
|
/* static const char me[]="_nrrdCheapMedian1D"; */ |
106 |
|
|
size_t num; |
107 |
|
|
int X, I, idx, diam; |
108 |
|
|
float half, *wt; |
109 |
|
|
double val, (*lup)(const void *, size_t); |
110 |
|
|
|
111 |
|
|
diam = 2*radius + 1; |
112 |
|
|
lup = nrrdDLookup[nin->type]; |
113 |
|
|
num = nrrdElementNumber(nin); |
114 |
|
|
if (1 == wght) { |
115 |
|
|
/* uniform weighting-> can do sliding histogram optimization */ |
116 |
|
|
/* initialize histogram */ |
117 |
|
|
half = AIR_CAST(float, diam/2 + 1); |
118 |
|
|
memset(hist, 0, bins*sizeof(float)); |
119 |
|
|
for (X=0; X<diam; X++) { |
120 |
|
|
hist[INDEX(nin, range, lup, X, bins, val)]++; |
121 |
|
|
} |
122 |
|
|
/* _nrrdCM_printhist(hist, bins, "after init"); */ |
123 |
|
|
/* find median at each point using existing histogram */ |
124 |
|
|
for (X=radius; X<(int)num-radius; X++) { |
125 |
|
|
/* _nrrdCM_printhist(hist, bins, "----------"); */ |
126 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
127 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
128 |
|
|
/* printf(" median idx = %d -> val = %g\n", idx, val); */ |
129 |
|
|
nrrdDInsert[nout->type](nout->data, X, val); |
130 |
|
|
/* probably update histogram for next iteration */ |
131 |
|
|
if (X < (int)num-radius-1) { |
132 |
|
|
hist[INDEX(nin, range, lup, X+radius+1, bins, val)]++; |
133 |
|
|
hist[INDEX(nin, range, lup, X-radius, bins, val)]--; |
134 |
|
|
} |
135 |
|
|
} |
136 |
|
|
} else { |
137 |
|
|
/* non-uniform weighting --> slow and stupid */ |
138 |
|
|
wt = _nrrdCM_wtAlloc(radius, wght); |
139 |
|
|
half = 0.5; |
140 |
|
|
for (X=radius; X<(int)num-radius; X++) { |
141 |
|
|
memset(hist, 0, bins*sizeof(float)); |
142 |
|
|
for (I=-radius; I<=radius; I++) { |
143 |
|
|
hist[INDEX(nin, range, lup, I+X, bins, val)] += wt[I+radius]; |
144 |
|
|
} |
145 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
146 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
147 |
|
|
nrrdDInsert[nout->type](nout->data, X, val); |
148 |
|
|
} |
149 |
|
|
free(wt); |
150 |
|
|
} |
151 |
|
|
} |
152 |
|
|
|
153 |
|
|
void |
154 |
|
|
_nrrdCheapMedian2D(Nrrd *nout, const Nrrd *nin, const NrrdRange *range, |
155 |
|
|
int radius, float wght, |
156 |
|
|
int bins, int mode, float *hist) { |
157 |
|
|
/* static const char me[]="_nrrdCheapMedian2D"; */ |
158 |
|
|
int X, Y, I, J; |
159 |
|
|
int sx, sy, idx, diam; |
160 |
|
|
float half, *wt; |
161 |
|
|
double val, (*lup)(const void *, size_t); |
162 |
|
|
|
163 |
|
|
diam = 2*radius + 1; |
164 |
|
|
sx = AIR_CAST(unsigned int, nin->axis[0].size); |
165 |
|
|
sy = AIR_CAST(unsigned int, nin->axis[1].size); |
166 |
|
|
lup = nrrdDLookup[nin->type]; |
167 |
|
|
if (1 == wght) { |
168 |
|
|
/* uniform weighting-> can do sliding histogram optimization */ |
169 |
|
|
half = AIR_CAST(float, diam*diam/2 + 1); |
170 |
|
|
for (Y=radius; Y<sy-radius; Y++) { |
171 |
|
|
/* initialize histogram */ |
172 |
|
|
memset(hist, 0, bins*sizeof(float)); |
173 |
|
|
X = radius; |
174 |
|
|
for (J=-radius; J<=radius; J++) { |
175 |
|
|
for (I=-radius; I<=radius; I++) { |
176 |
|
|
hist[INDEX(nin, range, lup, X+I + sx*(J+Y), bins, val)]++; |
177 |
|
|
} |
178 |
|
|
} |
179 |
|
|
/* _nrrdCM_printhist(hist, bins, "after init"); */ |
180 |
|
|
/* find median at each point using existing histogram */ |
181 |
|
|
for (X=radius; X<sx-radius; X++) { |
182 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
183 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
184 |
|
|
nrrdDInsert[nout->type](nout->data, X + sx*Y, val); |
185 |
|
|
/* probably update histogram for next iteration */ |
186 |
|
|
if (X < sx-radius-1) { |
187 |
|
|
for (J=-radius; J<=radius; J++) { |
188 |
|
|
hist[INDEX(nin, range, lup, X+radius+1 + sx*(J+Y), bins, val)]++; |
189 |
|
|
hist[INDEX(nin, range, lup, X-radius + sx*(J+Y), bins, val)]--; |
190 |
|
|
} |
191 |
|
|
} |
192 |
|
|
} |
193 |
|
|
} |
194 |
|
|
} else { |
195 |
|
|
/* non-uniform weighting --> slow and stupid */ |
196 |
|
|
wt = _nrrdCM_wtAlloc(radius, wght); |
197 |
|
|
half = 0.5; |
198 |
|
|
for (Y=radius; Y<sy-radius; Y++) { |
199 |
|
|
for (X=radius; X<sx-radius; X++) { |
200 |
|
|
memset(hist, 0, bins*sizeof(float)); |
201 |
|
|
for (J=-radius; J<=radius; J++) { |
202 |
|
|
for (I=-radius; I<=radius; I++) { |
203 |
|
|
hist[INDEX(nin, range, lup, I+X + sx*(J+Y), |
204 |
|
|
bins, val)] += wt[I+radius]*wt[J+radius]; |
205 |
|
|
} |
206 |
|
|
} |
207 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
208 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
209 |
|
|
nrrdDInsert[nout->type](nout->data, X + sx*Y, val); |
210 |
|
|
} |
211 |
|
|
} |
212 |
|
|
free(wt); |
213 |
|
|
} |
214 |
|
|
} |
215 |
|
|
|
216 |
|
|
void |
217 |
|
|
_nrrdCheapMedian3D(Nrrd *nout, const Nrrd *nin, const NrrdRange *range, |
218 |
|
|
int radius, float wght, |
219 |
|
|
int bins, int mode, float *hist) { |
220 |
|
|
static const char me[]="_nrrdCheapMedian3D"; |
221 |
|
|
char done[13]; |
222 |
|
|
int X, Y, Z, I, J, K; |
223 |
|
|
int sx, sy, sz, idx, diam; |
224 |
|
|
float half, *wt; |
225 |
|
|
double val, (*lup)(const void *, size_t); |
226 |
|
|
|
227 |
|
|
diam = 2*radius + 1; |
228 |
|
|
sx = AIR_CAST(int, nin->axis[0].size); |
229 |
|
|
sy = AIR_CAST(int, nin->axis[1].size); |
230 |
|
|
sz = AIR_CAST(int, nin->axis[2].size); |
231 |
|
|
lup = nrrdDLookup[nin->type]; |
232 |
|
|
fprintf(stderr, "%s: ... ", me); |
233 |
|
|
if (1 == wght) { |
234 |
|
|
/* uniform weighting-> can do sliding histogram optimization */ |
235 |
|
|
half = AIR_CAST(float, diam*diam*diam/2 + 1); |
236 |
|
|
fflush(stderr); |
237 |
|
|
for (Z=radius; Z<sz-radius; Z++) { |
238 |
|
|
fprintf(stderr, "%s", airDoneStr(radius, Z, sz-radius-1, done)); |
239 |
|
|
fflush(stderr); |
240 |
|
|
for (Y=radius; Y<sy-radius; Y++) { |
241 |
|
|
/* initialize histogram */ |
242 |
|
|
memset(hist, 0, bins*sizeof(float)); |
243 |
|
|
X = radius; |
244 |
|
|
for (K=-radius; K<=radius; K++) { |
245 |
|
|
for (J=-radius; J<=radius; J++) { |
246 |
|
|
for (I=-radius; I<=radius; I++) { |
247 |
|
|
hist[INDEX(nin, range, lup, I+X + sx*(J+Y + sy*(K+Z)), |
248 |
|
|
bins, val)]++; |
249 |
|
|
} |
250 |
|
|
} |
251 |
|
|
} |
252 |
|
|
/* find median at each point using existing histogram */ |
253 |
|
|
for (X=radius; X<sx-radius; X++) { |
254 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
255 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
256 |
|
|
nrrdDInsert[nout->type](nout->data, X + sx*(Y + sy*Z), val); |
257 |
|
|
/* probably update histogram for next iteration */ |
258 |
|
|
if (X < sx-radius-1) { |
259 |
|
|
for (K=-radius; K<=radius; K++) { |
260 |
|
|
for (J=-radius; J<=radius; J++) { |
261 |
|
|
hist[INDEX(nin, range, lup, X+radius+1 + sx*(J+Y + sy*(K+Z)), |
262 |
|
|
bins, val)]++; |
263 |
|
|
hist[INDEX(nin, range, lup, X-radius + sx*(J+Y + sy*(K+Z)), |
264 |
|
|
bins, val)]--; |
265 |
|
|
} |
266 |
|
|
} |
267 |
|
|
} |
268 |
|
|
} |
269 |
|
|
} |
270 |
|
|
} |
271 |
|
|
} else { |
272 |
|
|
/* non-uniform weighting --> slow and stupid */ |
273 |
|
|
wt = _nrrdCM_wtAlloc(radius, wght); |
274 |
|
|
half = 0.5; |
275 |
|
|
for (Z=radius; Z<sz-radius; Z++) { |
276 |
|
|
fprintf(stderr, "%s", airDoneStr(radius, Z, sz-radius-1, done)); |
277 |
|
|
fflush(stderr); |
278 |
|
|
for (Y=radius; Y<sy-radius; Y++) { |
279 |
|
|
for (X=radius; X<sx-radius; X++) { |
280 |
|
|
memset(hist, 0, bins*sizeof(float)); |
281 |
|
|
for (K=-radius; K<=radius; K++) { |
282 |
|
|
for (J=-radius; J<=radius; J++) { |
283 |
|
|
for (I=-radius; I<=radius; I++) { |
284 |
|
|
hist[INDEX(nin, range, lup, I+X + sx*(J+Y + sy*(K+Z)), |
285 |
|
|
bins, val)] |
286 |
|
|
+= wt[I+radius]*wt[J+radius]*wt[K+radius]; |
287 |
|
|
} |
288 |
|
|
} |
289 |
|
|
} |
290 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
291 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
292 |
|
|
nrrdDInsert[nout->type](nout->data, X + sx*(Y + sy*Z), val); |
293 |
|
|
} |
294 |
|
|
} |
295 |
|
|
} |
296 |
|
|
free(wt); |
297 |
|
|
} |
298 |
|
|
fprintf(stderr, "\b\b\b\b\b\b done\n"); |
299 |
|
|
} |
300 |
|
|
|
301 |
|
|
/* HEY: total copy-and-paste from _nrrdCheapMedian3D */ |
302 |
|
|
void |
303 |
|
|
_nrrdCheapMedian4D(Nrrd *nout, const Nrrd *nin, const NrrdRange *range, |
304 |
|
|
int radius, float wght, |
305 |
|
|
int bins, int mode, float *hist) { |
306 |
|
|
static const char me[]="_nrrdCheapMedian4D"; |
307 |
|
|
char done[13]; |
308 |
|
|
int W, X, Y, Z, H, I, J, K; |
309 |
|
|
int sw, sx, sy, sz, idx, diam; |
310 |
|
|
float half, *wt; |
311 |
|
|
double val, (*lup)(const void *, size_t); |
312 |
|
|
|
313 |
|
|
diam = 2*radius + 1; |
314 |
|
|
sw = AIR_CAST(int, nin->axis[0].size); |
315 |
|
|
sx = AIR_CAST(int, nin->axis[1].size); |
316 |
|
|
sy = AIR_CAST(int, nin->axis[2].size); |
317 |
|
|
sz = AIR_CAST(int, nin->axis[3].size); |
318 |
|
|
lup = nrrdDLookup[nin->type]; |
319 |
|
|
fprintf(stderr, "%s: ... ", me); |
320 |
|
|
if (1 == wght) { |
321 |
|
|
/* uniform weighting-> can do sliding histogram optimization */ |
322 |
|
|
half = AIR_CAST(float, diam*diam*diam*diam/2 + 1); |
323 |
|
|
fflush(stderr); |
324 |
|
|
for (Z=radius; Z<sz-radius; Z++) { |
325 |
|
|
fprintf(stderr, "%s", airDoneStr(radius, Z, sz-radius-1, done)); |
326 |
|
|
fflush(stderr); |
327 |
|
|
for (Y=radius; Y<sy-radius; Y++) { |
328 |
|
|
for (X=radius; X<sx-radius; X++) { |
329 |
|
|
/* initialize histogram */ |
330 |
|
|
memset(hist, 0, bins*sizeof(float)); |
331 |
|
|
W = radius; |
332 |
|
|
for (K=-radius; K<=radius; K++) { |
333 |
|
|
for (J=-radius; J<=radius; J++) { |
334 |
|
|
for (I=-radius; I<=radius; I++) { |
335 |
|
|
for (H=-radius; H<=radius; H++) { |
336 |
|
|
hist[INDEX(nin, range, lup, |
337 |
|
|
H+W + sw*(I+X + sx*(J+Y + sy*(K+Z))), |
338 |
|
|
bins, val)]++; |
339 |
|
|
} |
340 |
|
|
} |
341 |
|
|
} |
342 |
|
|
} |
343 |
|
|
/* find median at each point using existing histogram */ |
344 |
|
|
for (W=radius; W<sw-radius; W++) { |
345 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
346 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
347 |
|
|
nrrdDInsert[nout->type](nout->data, W + sw*(X + sx*(Y + sy*Z)), val); |
348 |
|
|
/* probably update histogram for next iteration */ |
349 |
|
|
if (W < sw-radius-1) { |
350 |
|
|
for (K=-radius; K<=radius; K++) { |
351 |
|
|
for (J=-radius; J<=radius; J++) { |
352 |
|
|
for (I=-radius; I<=radius; I++) { |
353 |
|
|
hist[INDEX(nin, range, lup, W+radius+1 + sw*(I+X + sx*(J+Y + sy*(K+Z))), |
354 |
|
|
bins, val)]++; |
355 |
|
|
hist[INDEX(nin, range, lup, W-radius + sw*(I+X + sx*(J+Y + sy*(K+Z))), |
356 |
|
|
bins, val)]--; |
357 |
|
|
} |
358 |
|
|
} |
359 |
|
|
} |
360 |
|
|
} |
361 |
|
|
} |
362 |
|
|
} |
363 |
|
|
} |
364 |
|
|
} |
365 |
|
|
} else { |
366 |
|
|
/* non-uniform weighting --> slow and stupid */ |
367 |
|
|
wt = _nrrdCM_wtAlloc(radius, wght); |
368 |
|
|
half = 0.5; |
369 |
|
|
for (Z=radius; Z<sz-radius; Z++) { |
370 |
|
|
fprintf(stderr, "%s", airDoneStr(radius, Z, sz-radius-1, done)); |
371 |
|
|
fflush(stderr); |
372 |
|
|
for (Y=radius; Y<sy-radius; Y++) { |
373 |
|
|
for (X=radius; X<sx-radius; X++) { |
374 |
|
|
for (W=radius; W<sw-radius; W++) { |
375 |
|
|
memset(hist, 0, bins*sizeof(float)); |
376 |
|
|
for (K=-radius; K<=radius; K++) { |
377 |
|
|
for (J=-radius; J<=radius; J++) { |
378 |
|
|
for (I=-radius; I<=radius; I++) { |
379 |
|
|
for (H=-radius; H<=radius; H++) { |
380 |
|
|
hist[INDEX(nin, range, lup, |
381 |
|
|
H+W + sw*(I+X + sx*(J+Y + sy*(K+Z))), |
382 |
|
|
bins, val)] |
383 |
|
|
+= wt[H+radius]*wt[I+radius]*wt[J+radius]*wt[K+radius]; |
384 |
|
|
} |
385 |
|
|
} |
386 |
|
|
} |
387 |
|
|
} |
388 |
|
|
idx = mode ? _nrrdCM_mode(hist, bins) : _nrrdCM_median(hist, half); |
389 |
|
|
val = NRRD_NODE_POS(range->min, range->max, bins, idx); |
390 |
|
|
nrrdDInsert[nout->type](nout->data, W + sw*(X + sx*(Y + sy*Z)), val); |
391 |
|
|
} |
392 |
|
|
} |
393 |
|
|
} |
394 |
|
|
} |
395 |
|
|
free(wt); |
396 |
|
|
} |
397 |
|
|
fprintf(stderr, "\b\b\b\b\b\b done\n"); |
398 |
|
|
} |
399 |
|
|
|
400 |
|
|
/* |
401 |
|
|
******** nrrdCheapMedian |
402 |
|
|
** |
403 |
|
|
** histogram-based median or mode filtering |
404 |
|
|
** !mode: median filtering |
405 |
|
|
** mode: mode filtering |
406 |
|
|
*/ |
407 |
|
|
int |
408 |
|
|
nrrdCheapMedian(Nrrd *_nout, const Nrrd *_nin, |
409 |
|
|
int pad, int mode, |
410 |
|
|
unsigned int radius, float wght, unsigned int bins) { |
411 |
|
|
static const char me[]="nrrdCheapMedian", func[]="cmedian"; |
412 |
|
|
NrrdRange *range; |
413 |
|
|
float *hist; |
414 |
|
|
Nrrd *nout, *nin; |
415 |
|
|
airArray *mop; |
416 |
|
|
unsigned int minsize; |
417 |
|
|
|
418 |
|
|
if (!(_nin && _nout)) { |
419 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
420 |
|
|
return 1; |
421 |
|
|
} |
422 |
|
|
if (!(radius >= 1)) { |
423 |
|
|
biffAddf(NRRD, "%s: need radius >= 1 (got %d)", me, radius); |
424 |
|
|
return 1; |
425 |
|
|
} |
426 |
|
|
if (!(bins >= 1)) { |
427 |
|
|
biffAddf(NRRD, "%s: need bins >= 1 (got %d)", me, bins); |
428 |
|
|
return 1; |
429 |
|
|
} |
430 |
|
|
if (!(AIR_IN_CL(1, _nin->dim, 4))) { |
431 |
|
|
biffAddf(NRRD, "%s: sorry, can only handle dim 1, 2, 3 (not %d)", |
432 |
|
|
me, _nin->dim); |
433 |
|
|
return 1; |
434 |
|
|
} |
435 |
|
|
minsize = AIR_CAST(unsigned int, _nin->axis[0].size); |
436 |
|
|
if (_nin->dim > 1) { |
437 |
|
|
minsize = AIR_MIN(minsize, AIR_CAST(unsigned int, _nin->axis[1].size)); |
438 |
|
|
} |
439 |
|
|
if (_nin->dim > 2) { |
440 |
|
|
minsize = AIR_MIN(minsize, AIR_CAST(unsigned int, _nin->axis[2].size)); |
441 |
|
|
} |
442 |
|
|
if (!pad && minsize < 2*radius+1) { |
443 |
|
|
biffAddf(NRRD, "%s: minimum nrrd size (%d) smaller than filtering " |
444 |
|
|
"window size (%d) with radius %d; must enable padding", me, |
445 |
|
|
minsize, 2*radius+1, radius); |
446 |
|
|
return 1; |
447 |
|
|
} |
448 |
|
|
if (_nout == _nin) { |
449 |
|
|
biffAddf(NRRD, "%s: nout==nin disallowed", me); |
450 |
|
|
return 1; |
451 |
|
|
} |
452 |
|
|
if (nrrdTypeBlock == _nin->type) { |
453 |
|
|
biffAddf(NRRD, "%s: can't filter nrrd type %s", me, |
454 |
|
|
airEnumStr(nrrdType, nrrdTypeBlock)); |
455 |
|
|
return 1; |
456 |
|
|
} |
457 |
|
|
|
458 |
|
|
mop = airMopNew(); |
459 |
|
|
/* set nin based on _nin */ |
460 |
|
|
airMopAdd(mop, nin=nrrdNew(), (airMopper)nrrdNuke, airMopAlways); |
461 |
|
|
if (pad) { |
462 |
|
|
airMopAdd(mop, nout=nrrdNew(), (airMopper)nrrdNuke, airMopAlways); |
463 |
|
|
if (nrrdSimplePad_va(nin, _nin, radius, nrrdBoundaryBleed)) { |
464 |
|
|
biffAddf(NRRD, "%s: trouble padding input", me); |
465 |
|
|
airMopError(mop); return 1; |
466 |
|
|
} |
467 |
|
|
} else { |
468 |
|
|
if (nrrdCopy(nin, _nin)) { |
469 |
|
|
biffAddf(NRRD, "%s: trouble copying input", me); |
470 |
|
|
airMopError(mop); return 1; |
471 |
|
|
} |
472 |
|
|
nout = _nout; |
473 |
|
|
} |
474 |
|
|
if (nrrdCopy(nout, nin)) { |
475 |
|
|
biffAddf(NRRD, "%s: failed to create initial copy of input", me); |
476 |
|
|
airMopError(mop); return 1; |
477 |
|
|
} |
478 |
|
|
range = nrrdRangeNewSet(nin, nrrdBlind8BitRangeFalse); |
479 |
|
|
airMopAdd(mop, range, (airMopper)nrrdRangeNix, airMopAlways); |
480 |
|
|
if (!(hist = (float*)calloc(bins, sizeof(float)))) { |
481 |
|
|
biffAddf(NRRD, "%s: couldn't allocate histogram (%d bins)", me, bins); |
482 |
|
|
airMopError(mop); return 1; |
483 |
|
|
} |
484 |
|
|
airMopAdd(mop, hist, airFree, airMopAlways); |
485 |
|
|
if (!AIR_EXISTS(wght)) { |
486 |
|
|
wght = 1.0; |
487 |
|
|
} |
488 |
|
|
switch (nin->dim) { |
489 |
|
|
case 1: |
490 |
|
|
_nrrdCheapMedian1D(nout, nin, range, radius, wght, bins, mode, hist); |
491 |
|
|
break; |
492 |
|
|
case 2: |
493 |
|
|
_nrrdCheapMedian2D(nout, nin, range, radius, wght, bins, mode, hist); |
494 |
|
|
break; |
495 |
|
|
case 3: |
496 |
|
|
_nrrdCheapMedian3D(nout, nin, range, radius, wght, bins, mode, hist); |
497 |
|
|
break; |
498 |
|
|
case 4: |
499 |
|
|
_nrrdCheapMedian4D(nout, nin, range, radius, wght, bins, mode, hist); |
500 |
|
|
break; |
501 |
|
|
default: |
502 |
|
|
biffAddf(NRRD, "%s: sorry, %d-dimensional median unimplemented", |
503 |
|
|
me, nin->dim); |
504 |
|
|
airMopError(mop); return 1; |
505 |
|
|
} |
506 |
|
|
|
507 |
|
|
nrrdAxisInfoCopy(nout, nin, NULL, NRRD_AXIS_INFO_NONE); |
508 |
|
|
if (nrrdContentSet_va(nout, func, nin, "%d,%d,%g,%d", |
509 |
|
|
mode, radius, wght, bins)) { |
510 |
|
|
biffAddf(NRRD, "%s:", me); |
511 |
|
|
airMopError(mop); return 1; |
512 |
|
|
} |
513 |
|
|
/* basic info handled by nrrdCopy above */ |
514 |
|
|
|
515 |
|
|
/* set _nout based on nout */ |
516 |
|
|
if (pad) { |
517 |
|
|
if (nrrdSimpleCrop(_nout, nout, radius)) { |
518 |
|
|
biffAddf(NRRD, "%s: trouble cropping output", me); |
519 |
|
|
airMopError(mop); return 1; |
520 |
|
|
} |
521 |
|
|
} else { |
522 |
|
|
/* we've already set output in _nout == nout */ |
523 |
|
|
} |
524 |
|
|
|
525 |
|
|
airMopOkay(mop); |
526 |
|
|
return 0; |
527 |
|
|
} |
528 |
|
|
|
529 |
|
|
/* |
530 |
|
|
** returns intersection of parabolas c(x) = spc^2 (x - xi)^2 + yi |
531 |
|
|
*/ |
532 |
|
|
static double |
533 |
|
|
intx(double xx0, double yy0, double xx1, double yy1, double spc) { |
534 |
|
|
double ss; |
535 |
|
|
|
536 |
|
|
ss = spc*spc; |
537 |
|
|
return (yy1/ss + xx1*xx1 - (yy0/ss + xx0*xx0))/(2*(xx1 - xx0)); |
538 |
|
|
} |
539 |
|
|
|
540 |
|
|
/* |
541 |
|
|
** squared-distance transform of single scanline |
542 |
|
|
** |
543 |
|
|
** based on code published with: |
544 |
|
|
** Distance Transforms of Sampled Functions |
545 |
|
|
** Pedro F. Felzenszwalb and Daniel P. Huttenlocher |
546 |
|
|
** Cornell Computing and Information Science TR2004-1963 |
547 |
|
|
** |
548 |
|
|
** dd: output (pre-allocated for "len") |
549 |
|
|
** ff: input function (pre-allocated for "len") |
550 |
|
|
** zz: buffer (pre-allocated for "len"+1) for locations of |
551 |
|
|
** boundaries between parabolas |
552 |
|
|
** vv: buffer (pre-allocated for "len") for locations of |
553 |
|
|
** parabolas in lower envelope |
554 |
|
|
** |
555 |
|
|
** The major modification from the published method is the inclusion |
556 |
|
|
** of the "spc" parameter that gives the inter-sample spacing, so that |
557 |
|
|
** the multi-dimensional version can work on non-isotropic samples. |
558 |
|
|
** |
559 |
|
|
** FLT_MIN and FLT_MAX are used to be consistent with the |
560 |
|
|
** initialization in nrrdDistanceL2(), which uses FLT_MAX |
561 |
|
|
** to be compatible with the case of using floats |
562 |
|
|
*/ |
563 |
|
|
static void |
564 |
|
|
distanceL2Sqrd1D(double *dd, const double *ff, |
565 |
|
|
double *zz, unsigned int *vv, |
566 |
|
|
size_t len, double spc) { |
567 |
|
|
size_t kk, qq; |
568 |
|
|
|
569 |
|
|
if (!( dd && ff && zz && vv && len > 0 )) { |
570 |
|
|
/* error */ |
571 |
|
|
return; |
572 |
|
|
} |
573 |
|
|
|
574 |
|
|
kk = 0; |
575 |
|
|
vv[0] = 0; |
576 |
|
|
zz[0] = -FLT_MAX; |
577 |
|
|
zz[1] = +FLT_MAX; |
578 |
|
|
for (qq=1; qq<len; qq++) { |
579 |
|
|
double ss; |
580 |
|
|
ss = intx(AIR_CAST(double, qq), ff[qq], vv[kk], ff[vv[kk]], spc); |
581 |
|
|
/* while (ss <= zz[kk]) { |
582 |
|
|
** HEY this can have kk going to -1 and into memory errors! |
583 |
|
|
*/ |
584 |
|
|
while (ss <= zz[kk] && kk) { |
585 |
|
|
kk--; |
586 |
|
|
ss = intx(AIR_CAST(double, qq), ff[qq], vv[kk], ff[vv[kk]], spc); |
587 |
|
|
} |
588 |
|
|
kk++; |
589 |
|
|
vv[kk] = AIR_CAST(unsigned int, qq); |
590 |
|
|
zz[kk] = ss; |
591 |
|
|
zz[kk+1] = +FLT_MAX; |
592 |
|
|
} |
593 |
|
|
|
594 |
|
|
kk = 0; |
595 |
|
|
for (qq=00; qq<len; qq++) { |
596 |
|
|
double dx; |
597 |
|
|
while (zz[kk+1] < qq) { |
598 |
|
|
kk++; |
599 |
|
|
} |
600 |
|
|
/* cast to avoid overflow weirdness on the unsigned ints */ |
601 |
|
|
dx = AIR_CAST(double, qq) - vv[kk]; |
602 |
|
|
dd[qq] = spc*spc*dx*dx + ff[vv[kk]]; |
603 |
|
|
} |
604 |
|
|
|
605 |
|
|
return; |
606 |
|
|
} |
607 |
|
|
|
608 |
|
|
static int |
609 |
|
|
distanceL2Sqrd(Nrrd *ndist, double *spcMean) { |
610 |
|
|
static const char me[]="distanceL2Sqrd"; |
611 |
|
|
size_t sizeMax; /* max size of all axes */ |
612 |
|
|
Nrrd *ntmpA, *ntmpB, *npass[NRRD_DIM_MAX+1]; |
613 |
|
|
int spcSomeExist, spcSomeNonExist; |
614 |
|
|
unsigned int di, *vv; |
615 |
|
|
double *dd, *ff, *zz; |
616 |
|
|
double spc[NRRD_DIM_MAX], vector[NRRD_SPACE_DIM_MAX]; |
617 |
|
|
double (*lup)(const void *, size_t), (*ins)(void *, size_t, double); |
618 |
|
|
airArray *mop; |
619 |
|
|
|
620 |
|
|
if (!( nrrdTypeFloat == ndist->type || nrrdTypeDouble == ndist->type )) { |
621 |
|
|
/* MWC: This error condition was/is being ignored. */ |
622 |
|
|
/* biffAddf(NRRD, "%s: sorry, can only process type %s or %s (not %s)", |
623 |
|
|
me, |
624 |
|
|
airEnumStr(nrrdType, nrrdTypeFloat), |
625 |
|
|
airEnumStr(nrrdType, nrrdTypeDouble), |
626 |
|
|
airEnumStr(nrrdType, ndist->type)); |
627 |
|
|
*/ |
628 |
|
|
} |
629 |
|
|
|
630 |
|
|
spcSomeExist = AIR_FALSE; |
631 |
|
|
spcSomeNonExist = AIR_FALSE; |
632 |
|
|
for (di=0; di<ndist->dim; di++) { |
633 |
|
|
nrrdSpacingCalculate(ndist, di, spc + di, vector); |
634 |
|
|
spcSomeExist |= AIR_EXISTS(spc[di]); |
635 |
|
|
spcSomeNonExist |= !AIR_EXISTS(spc[di]); |
636 |
|
|
} |
637 |
|
|
if (spcSomeExist && spcSomeNonExist) { |
638 |
|
|
biffAddf(NRRD, "%s: axis spacings must all exist or all non-exist", me); |
639 |
|
|
return 1; |
640 |
|
|
} |
641 |
|
|
if (!spcSomeExist) { |
642 |
|
|
for (di=0; di<ndist->dim; di++) { |
643 |
|
|
spc[di] = 1.0; |
644 |
|
|
} |
645 |
|
|
} |
646 |
|
|
*spcMean = 0; |
647 |
|
|
for (di=0; di<ndist->dim; di++) { |
648 |
|
|
*spcMean += spc[di]; |
649 |
|
|
} |
650 |
|
|
*spcMean /= ndist->dim; |
651 |
|
|
|
652 |
|
|
sizeMax = 0; |
653 |
|
|
for (di=0; di<ndist->dim; di++) { |
654 |
|
|
sizeMax = AIR_MAX(sizeMax, ndist->axis[di].size); |
655 |
|
|
} |
656 |
|
|
|
657 |
|
|
/* create mop and allocate tmp buffers */ |
658 |
|
|
mop = airMopNew(); |
659 |
|
|
ntmpA = nrrdNew(); |
660 |
|
|
airMopAdd(mop, ntmpA, (airMopper)nrrdNuke, airMopAlways); |
661 |
|
|
if (ndist->dim > 2) { |
662 |
|
|
ntmpB = nrrdNew(); |
663 |
|
|
airMopAdd(mop, ntmpB, (airMopper)nrrdNuke, airMopAlways); |
664 |
|
|
} else { |
665 |
|
|
ntmpB = NULL; |
666 |
|
|
} |
667 |
|
|
if (nrrdCopy(ntmpA, ndist) |
668 |
|
|
|| (ndist->dim > 2 && nrrdCopy(ntmpB, ndist))) { |
669 |
|
|
biffAddf(NRRD, "%s: couldn't allocate image buffers", me); |
670 |
|
|
} |
671 |
|
|
dd = AIR_CAST(double *, calloc(sizeMax, sizeof(double))); |
672 |
|
|
ff = AIR_CAST(double *, calloc(sizeMax, sizeof(double))); |
673 |
|
|
zz = AIR_CAST(double *, calloc(sizeMax+1, sizeof(double))); |
674 |
|
|
vv = AIR_CAST(unsigned int *, calloc(sizeMax, sizeof(unsigned int))); |
675 |
|
|
airMopAdd(mop, dd, airFree, airMopAlways); |
676 |
|
|
airMopAdd(mop, ff, airFree, airMopAlways); |
677 |
|
|
airMopAdd(mop, zz, airFree, airMopAlways); |
678 |
|
|
airMopAdd(mop, vv, airFree, airMopAlways); |
679 |
|
|
if (!( dd && ff && zz && vv )) { |
680 |
|
|
/* MWC: This error condition was/is being ignored. */ |
681 |
|
|
/* biffAddf(NRRD, "%s: couldn't allocate scanline buffers", me); */ |
682 |
|
|
} |
683 |
|
|
|
684 |
|
|
/* set up array of buffers */ |
685 |
|
|
npass[0] = ndist; |
686 |
|
|
for (di=1; di<ndist->dim; di++) { |
687 |
|
|
npass[di] = (di % 2) ? ntmpA : ntmpB; |
688 |
|
|
} |
689 |
|
|
npass[ndist->dim] = ndist; |
690 |
|
|
|
691 |
|
|
/* run the multiple passes */ |
692 |
|
|
/* what makes the indexing here so simple is that by assuming that |
693 |
|
|
we're processing every axis, the input to any given pass can be |
694 |
|
|
logically considered a 2-D image (a list of scanlines), where the |
695 |
|
|
second axis is the merge of all input axes but the first. With |
696 |
|
|
the rotational shuffle of axes through passes, the initial axis |
697 |
|
|
and the set of other axes swap places, so its like the 2-D image |
698 |
|
|
is being transposed. NOTE: the Nrrds that were allocated as |
699 |
|
|
buffers are really being mis-used, in that the axis sizes and |
700 |
|
|
raster ordering of what we're storing there is *not* the same as |
701 |
|
|
told by axis[].size */ |
702 |
|
|
lup = nrrdDLookup[ndist->type]; |
703 |
|
|
ins = nrrdDInsert[ndist->type]; |
704 |
|
|
for (di=0; di<ndist->dim; di++) { |
705 |
|
|
size_t lineIdx, lineNum, valIdx, valNum; |
706 |
|
|
|
707 |
|
|
valNum = ndist->axis[di].size; |
708 |
|
|
lineNum = nrrdElementNumber(ndist)/valNum; |
709 |
|
|
for (lineIdx=0; lineIdx<lineNum; lineIdx++) { |
710 |
|
|
/* read input scanline into ff */ |
711 |
|
|
for (valIdx=0; valIdx<valNum; valIdx++) { |
712 |
|
|
ff[valIdx] = lup(npass[di]->data, valIdx + valNum*lineIdx); |
713 |
|
|
} |
714 |
|
|
/* do the transform */ |
715 |
|
|
distanceL2Sqrd1D(dd, ff, zz, vv, valNum, spc[di]); |
716 |
|
|
/* write dd to output scanline */ |
717 |
|
|
for (valIdx=0; valIdx<valNum; valIdx++) { |
718 |
|
|
ins(npass[di+1]->data, lineIdx + lineNum*valIdx, dd[valIdx]); |
719 |
|
|
} |
720 |
|
|
} |
721 |
|
|
} |
722 |
|
|
|
723 |
|
|
airMopOkay(mop); |
724 |
|
|
return 0; |
725 |
|
|
} |
726 |
|
|
|
727 |
|
|
/* |
728 |
|
|
** helper function for distance transforms, is called by things that want to do |
729 |
|
|
** specific kinds of transforms. |
730 |
|
|
*/ |
731 |
|
|
static int |
732 |
|
|
_distanceBase(Nrrd *nout, const Nrrd *nin, |
733 |
|
|
int typeOut, const int *axisDo, |
734 |
|
|
double thresh, double bias, int insideHigher) { |
735 |
|
|
static const char me[]="_distanceBase"; |
736 |
|
|
size_t ii, nn; |
737 |
|
|
double (*lup)(const void *, size_t), (*ins)(void *, size_t, double); |
738 |
|
|
double spcMean; |
739 |
|
|
|
740 |
|
|
if (!( nout && nin )) { |
741 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
742 |
|
|
return 1; |
743 |
|
|
} |
744 |
|
|
if (nrrdTypeBlock == nin->type) { |
745 |
|
|
biffAddf(NRRD, "%s: need scalar type for distance transform (not %s)", |
746 |
|
|
me, airEnumStr(nrrdType, nrrdTypeBlock)); |
747 |
|
|
return 1; |
748 |
|
|
} |
749 |
|
|
if (!( nrrdTypeDouble == typeOut || nrrdTypeFloat == typeOut )) { |
750 |
|
|
biffAddf(NRRD, "%s: sorry, can only transform to type %s or %s " |
751 |
|
|
"(not %s)", me, |
752 |
|
|
airEnumStr(nrrdType, nrrdTypeFloat), |
753 |
|
|
airEnumStr(nrrdType, nrrdTypeDouble), |
754 |
|
|
airEnumStr(nrrdType, typeOut)); |
755 |
|
|
return 1; |
756 |
|
|
} |
757 |
|
|
if (axisDo) { |
758 |
|
|
biffAddf(NRRD, "%s: sorry, selective axis transform not implemented", |
759 |
|
|
me); |
760 |
|
|
return 1; |
761 |
|
|
} |
762 |
|
|
if (!AIR_EXISTS(thresh)) { |
763 |
|
|
biffAddf(NRRD, "%s: threshold (%g) doesn't exist", me, thresh); |
764 |
|
|
return 1; |
765 |
|
|
} |
766 |
|
|
|
767 |
|
|
if (nrrdConvert(nout, nin, typeOut)) { |
768 |
|
|
biffAddf(NRRD, "%s: couldn't allocate output", me); |
769 |
|
|
return 1; |
770 |
|
|
} |
771 |
|
|
lup = nrrdDLookup[nout->type]; |
772 |
|
|
ins = nrrdDInsert[nout->type]; |
773 |
|
|
|
774 |
|
|
nn = nrrdElementNumber(nout); |
775 |
|
|
for (ii=0; ii<nn; ii++) { |
776 |
|
|
double val, bb; |
777 |
|
|
val = lup(nout->data, ii); |
778 |
|
|
if (insideHigher) { |
779 |
|
|
bb = bias*(val - thresh); |
780 |
|
|
ins(nout->data, ii, val > thresh ? bb*bb : FLT_MAX); |
781 |
|
|
} else { |
782 |
|
|
bb = bias*(thresh - val); |
783 |
|
|
ins(nout->data, ii, val <= thresh ? bb*bb : FLT_MAX); |
784 |
|
|
} |
785 |
|
|
} |
786 |
|
|
|
787 |
|
|
if (distanceL2Sqrd(nout, &spcMean)) { |
788 |
|
|
biffAddf(NRRD, "%s: trouble doing transform", me); |
789 |
|
|
return 1; |
790 |
|
|
} |
791 |
|
|
|
792 |
|
|
for (ii=0; ii<nn; ii++) { |
793 |
|
|
double val; |
794 |
|
|
val = sqrt(lup(nout->data, ii)); |
795 |
|
|
/* here's where the distance is tweaked downwards by half a sample width */ |
796 |
|
|
ins(nout->data, ii, AIR_MAX(0, val - spcMean/2)); |
797 |
|
|
} |
798 |
|
|
|
799 |
|
|
return 0; |
800 |
|
|
} |
801 |
|
|
|
802 |
|
|
/* |
803 |
|
|
******** nrrdDistanceL2 |
804 |
|
|
** |
805 |
|
|
** computes euclidean (L2) distance transform of input image, after |
806 |
|
|
** thresholding at "thresh". |
807 |
|
|
** |
808 |
|
|
** NOTE: the output of this is slightly offset from what one might |
809 |
|
|
** expect; decreased by half of the average (over all axes) sample |
810 |
|
|
** spacing. The reason for this is so that when the transform is |
811 |
|
|
** applied to the inverted image and negated, to create a full |
812 |
|
|
** signed distance map, the transition from interior to exterior |
813 |
|
|
** distance values is smooth. Without this trick, there is a |
814 |
|
|
** small little plateau at the transition. |
815 |
|
|
*/ |
816 |
|
|
int |
817 |
|
|
nrrdDistanceL2(Nrrd *nout, const Nrrd *nin, |
818 |
|
|
int typeOut, const int *axisDo, |
819 |
|
|
double thresh, int insideHigher) { |
820 |
|
|
static const char me[]="nrrdDistanceL2"; |
821 |
|
|
|
822 |
|
|
if (_distanceBase(nout, nin, typeOut, axisDo, thresh, 0, insideHigher)) { |
823 |
|
|
biffAddf(NRRD, "%s: trouble doing distance transform", me); |
824 |
|
|
return 1; |
825 |
|
|
} |
826 |
|
|
return 0; |
827 |
|
|
} |
828 |
|
|
|
829 |
|
|
int |
830 |
|
|
nrrdDistanceL2Biased(Nrrd *nout, const Nrrd *nin, |
831 |
|
|
int typeOut, const int *axisDo, |
832 |
|
|
double thresh, double bias, int insideHigher) { |
833 |
|
|
static const char me[]="nrrdDistanceL2Biased"; |
834 |
|
|
|
835 |
|
|
if (_distanceBase(nout, nin, typeOut, axisDo, thresh, bias, insideHigher)) { |
836 |
|
|
biffAddf(NRRD, "%s: trouble doing distance transform", me); |
837 |
|
|
return 1; |
838 |
|
|
} |
839 |
|
|
return 0; |
840 |
|
|
} |
841 |
|
|
|
842 |
|
|
int |
843 |
|
|
nrrdDistanceL2Signed(Nrrd *nout, const Nrrd *nin, |
844 |
|
|
int typeOut, const int *axisDo, |
845 |
|
|
double thresh, int insideHigher) { |
846 |
|
|
static const char me[]="nrrdDistanceL2Signed"; |
847 |
|
|
airArray *mop; |
848 |
|
|
Nrrd *ninv; |
849 |
|
|
|
850 |
|
|
if (!(nout && nin)) { |
851 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
852 |
|
|
return 1; |
853 |
|
|
} |
854 |
|
|
|
855 |
|
|
mop = airMopNew(); |
856 |
|
|
ninv = nrrdNew(); |
857 |
|
|
airMopAdd(mop, ninv, (airMopper)nrrdNuke, airMopAlways); |
858 |
|
|
|
859 |
|
|
if (nrrdDistanceL2(nout, nin, typeOut, axisDo, thresh, insideHigher) |
860 |
|
|
|| nrrdDistanceL2(ninv, nin, typeOut, axisDo, thresh, !insideHigher) |
861 |
|
|
|| nrrdArithUnaryOp(ninv, nrrdUnaryOpNegative, ninv) |
862 |
|
|
|| nrrdArithBinaryOp(nout, nrrdBinaryOpAdd, nout, ninv)) { |
863 |
|
|
biffAddf(NRRD, "%s: trouble doing or combining transforms", me); |
864 |
|
|
airMopError(mop); return 1; |
865 |
|
|
} |
866 |
|
|
|
867 |
|
|
airMopOkay(mop); |
868 |
|
|
return 0; |
869 |
|
|
} |