1 |
|
|
/* |
2 |
|
|
Teem: Tools to process and visualize scientific data and images . |
3 |
|
|
Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 |
|
|
Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 |
|
|
Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 |
|
|
|
7 |
|
|
This library is free software; you can redistribute it and/or |
8 |
|
|
modify it under the terms of the GNU Lesser General Public License |
9 |
|
|
(LGPL) as published by the Free Software Foundation; either |
10 |
|
|
version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
The terms of redistributing and/or modifying this software also |
12 |
|
|
include exceptions to the LGPL that facilitate static linking. |
13 |
|
|
|
14 |
|
|
This library is distributed in the hope that it will be useful, |
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 |
|
|
Lesser General Public License for more details. |
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU Lesser General Public License |
20 |
|
|
along with this library; if not, write to Free Software Foundation, Inc., |
21 |
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
#include "nrrd.h" |
25 |
|
|
#include "privateNrrd.h" |
26 |
|
|
|
27 |
|
|
/* |
28 |
|
|
******** nrrdInvertPerm() |
29 |
|
|
** |
30 |
|
|
** given an array (p) which represents a permutation of n elements, |
31 |
|
|
** compute the inverse permutation ip. The value of this function |
32 |
|
|
** is not its core functionality, but all the error checking it |
33 |
|
|
** provides. |
34 |
|
|
*/ |
35 |
|
|
int |
36 |
|
|
nrrdInvertPerm(unsigned int *invp, const unsigned int *pp, unsigned int nn) { |
37 |
|
|
static const char me[]="nrrdInvertPerm"; |
38 |
|
|
int problem; |
39 |
|
|
unsigned int ii; |
40 |
|
|
|
41 |
|
|
if (!(invp && pp && nn > 0)) { |
42 |
|
|
biffAddf(NRRD, "%s: got NULL pointer or non-positive nn (%d)", me, nn); |
43 |
|
|
return 1; |
44 |
|
|
} |
45 |
|
|
|
46 |
|
|
/* use the given array "invp" as a temp buffer for validity checking */ |
47 |
|
|
memset(invp, 0, nn*sizeof(unsigned int)); |
48 |
|
|
for (ii=0; ii<nn; ii++) { |
49 |
|
|
if (!( pp[ii] <= nn-1)) { |
50 |
|
|
biffAddf(NRRD, |
51 |
|
|
"%s: permutation element #%d == %d out of bounds [0,%d]", |
52 |
|
|
me, ii, pp[ii], nn-1); |
53 |
|
|
return 1; |
54 |
|
|
} |
55 |
|
|
invp[pp[ii]]++; |
56 |
|
|
} |
57 |
|
|
/* for some reason when this code was written (revision 2700 Sun Jul |
58 |
|
|
3 04:18:33 2005 UTC) it was decided that all problems with the |
59 |
|
|
permutation would be reported with a pile of error messages in |
60 |
|
|
biff; rather than bailing at the first problem. Not clear if |
61 |
|
|
this is a good idea. */ |
62 |
|
|
problem = AIR_FALSE; |
63 |
|
|
for (ii=0; ii<nn; ii++) { |
64 |
|
|
if (1 != invp[ii]) { |
65 |
|
|
biffAddf(NRRD, "%s: element #%d mapped to %d times (should be once)", |
66 |
|
|
me, ii, invp[ii]); |
67 |
|
|
problem = AIR_TRUE; |
68 |
|
|
} |
69 |
|
|
} |
70 |
|
|
if (problem) { |
71 |
|
|
return 1; |
72 |
|
|
} |
73 |
|
|
|
74 |
|
|
/* the skinny */ |
75 |
|
|
for (ii=0; ii<nn; ii++) { |
76 |
|
|
invp[pp[ii]] = ii; |
77 |
|
|
} |
78 |
|
|
|
79 |
|
|
return 0; |
80 |
|
|
} |
81 |
|
|
|
82 |
|
|
/* |
83 |
|
|
******** nrrdAxesInsert |
84 |
|
|
** |
85 |
|
|
** like reshape, but preserves axis information on old axes, and |
86 |
|
|
** this is only for adding a "stub" axis with length 1. All other |
87 |
|
|
** axis attributes are initialized as usual. |
88 |
|
|
*/ |
89 |
|
|
int |
90 |
|
|
nrrdAxesInsert(Nrrd *nout, const Nrrd *nin, unsigned int axis) { |
91 |
|
|
static const char me[]="nrrdAxesInsert", func[]="axinsert"; |
92 |
|
|
unsigned int ai; |
93 |
|
|
|
94 |
✗✓ |
16 |
if (!(nout && nin)) { |
95 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
96 |
|
|
return 1; |
97 |
|
|
} |
98 |
✗✓ |
8 |
if (!( axis <= nin->dim )) { |
99 |
|
|
biffAddf(NRRD, "%s: given axis (%d) outside valid range [0, %d]", |
100 |
|
|
me, axis, nin->dim); |
101 |
|
|
return 1; |
102 |
|
|
} |
103 |
✗✓ |
8 |
if (NRRD_DIM_MAX == nin->dim) { |
104 |
|
|
biffAddf(NRRD, "%s: given nrrd already at NRRD_DIM_MAX (%d)", |
105 |
|
|
me, NRRD_DIM_MAX); |
106 |
|
|
return 1; |
107 |
|
|
} |
108 |
✓✗ |
8 |
if (nout != nin) { |
109 |
✗✓ |
8 |
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT |
110 |
|
8 |
| (nrrdStateKeyValuePairsPropagate |
111 |
|
|
? 0 |
112 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) { |
113 |
|
|
biffAddf(NRRD, "%s:", me); |
114 |
|
|
return 1; |
115 |
|
|
} |
116 |
|
|
} |
117 |
|
8 |
nout->dim = 1 + nin->dim; |
118 |
✓✓ |
64 |
for (ai=nin->dim; ai>axis; ai--) { |
119 |
|
24 |
_nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai-1]), |
120 |
|
|
NRRD_AXIS_INFO_NONE); |
121 |
|
|
} |
122 |
|
|
/* the ONLY thing we can say about the new axis is its size */ |
123 |
|
8 |
_nrrdAxisInfoInit(&(nout->axis[axis])); |
124 |
✓✗ |
8 |
if (!nrrdStateKindNoop) { |
125 |
|
|
/* except maybe the kind */ |
126 |
|
8 |
nout->axis[axis].kind = nrrdKindStub; |
127 |
|
8 |
} |
128 |
|
8 |
nout->axis[axis].size = 1; |
129 |
✗✓ |
8 |
if (nrrdContentSet_va(nout, func, nin, "%d", axis)) { |
130 |
|
|
biffAddf(NRRD, "%s:", me); |
131 |
|
|
return 1; |
132 |
|
|
} |
133 |
|
|
/* all basic info has already been copied by nrrdCopy() above */ |
134 |
|
8 |
return 0; |
135 |
|
8 |
} |
136 |
|
|
|
137 |
|
|
/* |
138 |
|
|
******** nrrdAxesPermute |
139 |
|
|
** |
140 |
|
|
** changes the scanline ordering of the data in a nrrd |
141 |
|
|
** |
142 |
|
|
** The basic means by which data is moved around is with memcpy(). |
143 |
|
|
** The goal is to call memcpy() as few times as possible, on memory |
144 |
|
|
** segments as large as possible. Currently, this is done by |
145 |
|
|
** detecting how many of the low-index axes are left untouched by |
146 |
|
|
** the permutation- this constitutes a "scanline" which can be |
147 |
|
|
** copied around as a unit. For permuting the y and z axes of a |
148 |
|
|
** matrix-x-y-z order matrix volume, this optimization produced a |
149 |
|
|
** factor of 5 speed up (exhaustive multi-platform tests, of course). |
150 |
|
|
** |
151 |
|
|
** The axes[] array determines the permutation of the axes. |
152 |
|
|
** axis[i] = j means: axis i in the output will be the input's axis j |
153 |
|
|
** (axis[i] answers: "what do I put here", from the standpoint of the output, |
154 |
|
|
** not "where do I put this", from the standpoint of the input) |
155 |
|
|
*/ |
156 |
|
|
int |
157 |
|
|
nrrdAxesPermute(Nrrd *nout, const Nrrd *nin, const unsigned int *axes) { |
158 |
|
|
static const char me[]="nrrdAxesPermute", func[]="permute"; |
159 |
|
|
char buff1[NRRD_DIM_MAX*30], buff2[AIR_STRLEN_SMALL]; |
160 |
|
|
size_t idxOut, idxInA=0, /* indices for input and output scanlines */ |
161 |
|
|
lineSize, /* size of block of memory which can be |
162 |
|
|
moved contiguously from input to output, |
163 |
|
|
thought of as a "scanline" */ |
164 |
|
|
numLines, /* how many "scanlines" there are to permute */ |
165 |
|
|
szIn[NRRD_DIM_MAX], *lszIn, |
166 |
|
|
szOut[NRRD_DIM_MAX], *lszOut, |
167 |
|
|
cIn[NRRD_DIM_MAX], |
168 |
|
|
cOut[NRRD_DIM_MAX]; |
169 |
|
|
char *dataIn, *dataOut; |
170 |
|
|
int axmap[NRRD_DIM_MAX]; |
171 |
|
|
unsigned int |
172 |
|
|
ai, /* running index along dimensions */ |
173 |
|
|
lowPax, /* lowest axis which is "p"ermutated */ |
174 |
|
|
ldim, /* nin->dim - lowPax */ |
175 |
|
|
ip[NRRD_DIM_MAX+1], /* inverse of permutation in "axes" */ |
176 |
|
|
laxes[NRRD_DIM_MAX+1]; /* copy of axes[], but shifted down by lowPax |
177 |
|
|
elements, to remove i such that i == axes[i] */ |
178 |
|
|
airArray *mop; |
179 |
|
|
|
180 |
|
|
mop = airMopNew(); |
181 |
|
|
if (!(nin && nout && axes)) { |
182 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
183 |
|
|
airMopError(mop); return 1; |
184 |
|
|
} |
185 |
|
|
/* we don't actually need ip[], computing it is for error checking */ |
186 |
|
|
if (nrrdInvertPerm(ip, axes, nin->dim)) { |
187 |
|
|
biffAddf(NRRD, "%s: couldn't compute axis permutation inverse", me); |
188 |
|
|
airMopError(mop); return 1; |
189 |
|
|
} |
190 |
|
|
/* this shouldn't actually be necessary .. */ |
191 |
|
|
if (!nrrdElementSize(nin)) { |
192 |
|
|
biffAddf(NRRD, "%s: nrrd reports zero element size!", me); |
193 |
|
|
airMopError(mop); return 1; |
194 |
|
|
} |
195 |
|
|
|
196 |
|
|
for (ai=0; ai<nin->dim && axes[ai] == ai; ai++) |
197 |
|
|
; |
198 |
|
|
lowPax = ai; |
199 |
|
|
|
200 |
|
|
/* allocate output by initial copy */ |
201 |
|
|
if (nout != nin) { |
202 |
|
|
if (nrrdCopy(nout, nin)) { |
203 |
|
|
biffAddf(NRRD, "%s: trouble copying input", me); |
204 |
|
|
airMopError(mop); return 1; |
205 |
|
|
} |
206 |
|
|
dataIn = (char*)nin->data; |
207 |
|
|
} else { |
208 |
|
|
dataIn = (char*)calloc(nrrdElementNumber(nin), nrrdElementSize(nin)); |
209 |
|
|
if (!dataIn) { |
210 |
|
|
biffAddf(NRRD, "%s: couldn't create local copy of data", me); |
211 |
|
|
airMopError(mop); return 1; |
212 |
|
|
} |
213 |
|
|
airMopAdd(mop, dataIn, airFree, airMopAlways); |
214 |
|
|
memcpy(dataIn, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin)); |
215 |
|
|
} |
216 |
|
|
if (lowPax < nin->dim) { |
217 |
|
|
/* if lowPax == nin->dim, then we were given the identity permutation, so |
218 |
|
|
there's nothing to do other than the copy already done. Otherwise, |
219 |
|
|
here we are (actually, lowPax < nin->dim-1) */ |
220 |
|
|
for (ai=0; ai<nin->dim; ai++) { |
221 |
|
|
axmap[ai] = AIR_INT(axes[ai]); |
222 |
|
|
} |
223 |
|
|
nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, szIn); |
224 |
|
|
if (nrrdAxisInfoCopy(nout, nin, axmap, NRRD_AXIS_INFO_NONE)) { |
225 |
|
|
biffAddf(NRRD, "%s:", me); |
226 |
|
|
airMopError(mop); return 1; |
227 |
|
|
} |
228 |
|
|
nrrdAxisInfoGet_nva(nout, nrrdAxisInfoSize, szOut); |
229 |
|
|
/* the skinny */ |
230 |
|
|
lineSize = 1; |
231 |
|
|
for (ai=0; ai<lowPax; ai++) { |
232 |
|
|
lineSize *= szIn[ai]; |
233 |
|
|
} |
234 |
|
|
numLines = nrrdElementNumber(nin)/lineSize; |
235 |
|
|
lineSize *= nrrdElementSize(nin); |
236 |
|
|
lszIn = szIn + lowPax; |
237 |
|
|
lszOut = szOut + lowPax; |
238 |
|
|
ldim = nin->dim - lowPax; |
239 |
|
|
memset(laxes, 0, sizeof(laxes)); |
240 |
|
|
for (ai=0; ai<ldim; ai++) { |
241 |
|
|
laxes[ai] = axes[ai+lowPax]-lowPax; |
242 |
|
|
} |
243 |
|
|
dataOut = AIR_CAST(char *, nout->data); |
244 |
|
|
memset(cIn, 0, sizeof(cIn)); |
245 |
|
|
memset(cOut, 0, sizeof(cOut)); |
246 |
|
|
for (idxOut=0; idxOut<numLines; idxOut++) { |
247 |
|
|
/* in our representation of the coordinates of the start of the |
248 |
|
|
scanlines that we're copying, we are not even storing all the |
249 |
|
|
zeros in the coordinates prior to lowPax, and when we go to |
250 |
|
|
a linear index for the memcpy(), we multiply by lineSize */ |
251 |
|
|
for (ai=0; ai<ldim; ai++) { |
252 |
|
|
cIn[laxes[ai]] = cOut[ai]; |
253 |
|
|
} |
254 |
|
|
NRRD_INDEX_GEN(idxInA, cIn, lszIn, ldim); |
255 |
|
|
memcpy(dataOut + idxOut*lineSize, dataIn + idxInA*lineSize, lineSize); |
256 |
|
|
NRRD_COORD_INCR(cOut, lszOut, ldim, 0); |
257 |
|
|
} |
258 |
|
|
/* set content */ |
259 |
|
|
strcpy(buff1, ""); |
260 |
|
|
for (ai=0; ai<nin->dim; ai++) { |
261 |
|
|
sprintf(buff2, "%s%d", (ai ? "," : ""), axes[ai]); |
262 |
|
|
strcat(buff1, buff2); |
263 |
|
|
} |
264 |
|
|
if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) { |
265 |
|
|
biffAddf(NRRD, "%s:", me); |
266 |
|
|
airMopError(mop); return 1; |
267 |
|
|
} |
268 |
|
|
if (nout != nin) { |
269 |
|
|
if (nrrdBasicInfoCopy(nout, nin, |
270 |
|
|
NRRD_BASIC_INFO_DATA_BIT |
271 |
|
|
| NRRD_BASIC_INFO_TYPE_BIT |
272 |
|
|
| NRRD_BASIC_INFO_BLOCKSIZE_BIT |
273 |
|
|
| NRRD_BASIC_INFO_DIMENSION_BIT |
274 |
|
|
| NRRD_BASIC_INFO_CONTENT_BIT |
275 |
|
|
| NRRD_BASIC_INFO_COMMENTS_BIT |
276 |
|
|
| (nrrdStateKeyValuePairsPropagate |
277 |
|
|
? 0 |
278 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) { |
279 |
|
|
biffAddf(NRRD, "%s:", me); |
280 |
|
|
airMopError(mop); return 1; |
281 |
|
|
} |
282 |
|
|
} |
283 |
|
|
} |
284 |
|
|
airMopOkay(mop); |
285 |
|
|
return 0; |
286 |
|
|
} |
287 |
|
|
|
288 |
|
|
/* |
289 |
|
|
******** nrrdShuffle |
290 |
|
|
** |
291 |
|
|
** rearranges hyperslices of a nrrd along a given axis according to |
292 |
|
|
** given permutation. This could be used to on a 4D array, |
293 |
|
|
** representing a 3D volume of vectors, to re-order the vector |
294 |
|
|
** components. |
295 |
|
|
** |
296 |
|
|
** the given permutation array must allocated for at least as long as |
297 |
|
|
** the input nrrd along the chosen axis. perm[j] = i means that the |
298 |
|
|
** value at position j in the _new_ array should come from position i |
299 |
|
|
** in the _old_array. The standpoint is from the new, looking at |
300 |
|
|
** where to find the values amid the old array (perm answers "what do |
301 |
|
|
** I put here", not "where do I put this"). This allows multiple |
302 |
|
|
** positions in the new array to copy from the same old position, and |
303 |
|
|
** insures that there is an source for all positions along the new |
304 |
|
|
** array. |
305 |
|
|
*/ |
306 |
|
|
int |
307 |
|
|
nrrdShuffle(Nrrd *nout, const Nrrd *nin, unsigned int axis, |
308 |
|
|
const size_t *perm) { |
309 |
|
|
static const char me[]="nrrdShuffle", func[]="shuffle"; |
310 |
|
|
char buff2[AIR_STRLEN_SMALL]; |
311 |
|
|
/* Sun Feb 8 13:13:58 CST 2009: There was a memory bug here caused |
312 |
|
|
by using the same buff1[NRRD_DIM_MAX*30] declaration that had |
313 |
|
|
worked fine for nrrdAxesPermute and nrrdReshape, but does NOT |
314 |
|
|
work here because now samples along an axes are re-ordered, not |
315 |
|
|
axes, so its often not allocated for long enough to hold the |
316 |
|
|
string that's printed to it. Ideally there'd be another argument |
317 |
|
|
that says whether to document the shuffle in the content string, |
318 |
|
|
which would mean an API change. Or, we can use a secret |
319 |
|
|
heuristic (or maybe later a nrrdState variable) for determining |
320 |
|
|
when an axis is short enough to make documenting the shuffle |
321 |
|
|
interesting. This is useful since functions like nrrdFlip() |
322 |
|
|
probably do *not* need the shuffle (the sample reversal) to be |
323 |
|
|
documented for long axes */ |
324 |
|
|
#define LONGEST_INTERESTING_AXIS 42 |
325 |
|
|
char buff1[LONGEST_INTERESTING_AXIS*30]; |
326 |
|
|
unsigned int ai, ldim, len; |
327 |
|
|
size_t idxInB=0, idxOut, lineSize, numLines, size[NRRD_DIM_MAX], *lsize, |
328 |
|
|
cIn[NRRD_DIM_MAX+1], cOut[NRRD_DIM_MAX+1]; |
329 |
|
|
char *dataIn, *dataOut; |
330 |
|
|
|
331 |
|
|
if (!(nin && nout && perm)) { |
332 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
333 |
|
|
return 1; |
334 |
|
|
} |
335 |
|
|
if (nout == nin) { |
336 |
|
|
biffAddf(NRRD, "%s: nout==nin disallowed", me); |
337 |
|
|
return 1; |
338 |
|
|
} |
339 |
|
|
if (!( axis < nin->dim )) { |
340 |
|
|
biffAddf(NRRD, "%s: axis %d outside valid range [0,%d]", |
341 |
|
|
me, axis, nin->dim-1); |
342 |
|
|
return 1; |
343 |
|
|
} |
344 |
|
|
len = AIR_CAST(unsigned int, nin->axis[axis].size); |
345 |
|
|
for (ai=0; ai<len; ai++) { |
346 |
|
|
if (!( perm[ai] < len )) { |
347 |
|
|
char stmp[AIR_STRLEN_SMALL]; |
348 |
|
|
biffAddf(NRRD, "%s: perm[%d] (%s) outside valid range [0,%d]", me, ai, |
349 |
|
|
airSprintSize_t(stmp, perm[ai]), len-1); |
350 |
|
|
return 1; |
351 |
|
|
} |
352 |
|
|
} |
353 |
|
|
/* this shouldn't actually be necessary .. */ |
354 |
|
|
if (!nrrdElementSize(nin)) { |
355 |
|
|
biffAddf(NRRD, "%s: nrrd reports zero element size!", me); |
356 |
|
|
return 1; |
357 |
|
|
} |
358 |
|
|
/* set information in new volume */ |
359 |
|
|
nout->blockSize = nin->blockSize; |
360 |
|
|
nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, size); |
361 |
|
|
if (nrrdMaybeAlloc_nva(nout, nin->type, nin->dim, size)) { |
362 |
|
|
biffAddf(NRRD, "%s: failed to allocate output", me); |
363 |
|
|
return 1; |
364 |
|
|
} |
365 |
|
|
if (nrrdAxisInfoCopy(nout, nin, NULL, NRRD_AXIS_INFO_NONE)) { |
366 |
|
|
biffAddf(NRRD, "%s:", me); |
367 |
|
|
return 1; |
368 |
|
|
} |
369 |
|
|
/* the min and max along the shuffled axis are now meaningless */ |
370 |
|
|
nout->axis[axis].min = nout->axis[axis].max = AIR_NAN; |
371 |
|
|
/* do the safe thing first */ |
372 |
|
|
nout->axis[axis].kind = _nrrdKindAltered(nin->axis[axis].kind, AIR_FALSE); |
373 |
|
|
/* try cleverness */ |
374 |
|
|
if (!nrrdStateKindNoop) { |
375 |
|
|
if (0 == nrrdKindSize(nin->axis[axis].kind) |
376 |
|
|
|| nrrdKindStub == nin->axis[axis].kind |
377 |
|
|
|| nrrdKindScalar == nin->axis[axis].kind |
378 |
|
|
|| nrrdKind2Vector == nin->axis[axis].kind |
379 |
|
|
|| nrrdKind3Color == nin->axis[axis].kind |
380 |
|
|
|| nrrdKind4Color == nin->axis[axis].kind |
381 |
|
|
|| nrrdKind3Vector == nin->axis[axis].kind |
382 |
|
|
|| nrrdKind3Gradient == nin->axis[axis].kind |
383 |
|
|
|| nrrdKind3Normal == nin->axis[axis].kind |
384 |
|
|
|| nrrdKind4Vector == nin->axis[axis].kind) { |
385 |
|
|
/* these kinds have no intrinsic ordering */ |
386 |
|
|
nout->axis[axis].kind = nin->axis[axis].kind; |
387 |
|
|
} |
388 |
|
|
} |
389 |
|
|
/* the skinny */ |
390 |
|
|
lineSize = 1; |
391 |
|
|
for (ai=0; ai<axis; ai++) { |
392 |
|
|
lineSize *= nin->axis[ai].size; |
393 |
|
|
} |
394 |
|
|
numLines = nrrdElementNumber(nin)/lineSize; |
395 |
|
|
lineSize *= nrrdElementSize(nin); |
396 |
|
|
lsize = size + axis; |
397 |
|
|
ldim = nin->dim - axis; |
398 |
|
|
dataIn = AIR_CAST(char *, nin->data); |
399 |
|
|
dataOut = AIR_CAST(char *, nout->data); |
400 |
|
|
memset(cIn, 0, sizeof(cIn)); |
401 |
|
|
memset(cOut, 0, sizeof(cOut)); |
402 |
|
|
for (idxOut=0; idxOut<numLines; idxOut++) { |
403 |
|
|
memcpy(cIn, cOut, sizeof(cIn)); |
404 |
|
|
cIn[0] = perm[cOut[0]]; |
405 |
|
|
NRRD_INDEX_GEN(idxInB, cIn, lsize, ldim); |
406 |
|
|
NRRD_INDEX_GEN(idxOut, cOut, lsize, ldim); |
407 |
|
|
memcpy(dataOut + idxOut*lineSize, dataIn + idxInB*lineSize, lineSize); |
408 |
|
|
NRRD_COORD_INCR(cOut, lsize, ldim, 0); |
409 |
|
|
} |
410 |
|
|
/* Set content. The LONGEST_INTERESTING_AXIS hack avoids the |
411 |
|
|
previous array out-of-bounds bug */ |
412 |
|
|
if (len <= LONGEST_INTERESTING_AXIS) { |
413 |
|
|
strcpy(buff1, ""); |
414 |
|
|
for (ai=0; ai<len; ai++) { |
415 |
|
|
char stmp[AIR_STRLEN_SMALL]; |
416 |
|
|
sprintf(buff2, "%s%s", (ai ? "," : ""), airSprintSize_t(stmp, perm[ai])); |
417 |
|
|
strcat(buff1, buff2); |
418 |
|
|
} |
419 |
|
|
if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) { |
420 |
|
|
biffAddf(NRRD, "%s:", me); |
421 |
|
|
return 1; |
422 |
|
|
} |
423 |
|
|
} else { |
424 |
|
|
if (nrrdContentSet_va(nout, func, nin, "")) { |
425 |
|
|
biffAddf(NRRD, "%s:", me); |
426 |
|
|
return 1; |
427 |
|
|
} |
428 |
|
|
} |
429 |
|
|
if (nrrdBasicInfoCopy(nout, nin, |
430 |
|
|
NRRD_BASIC_INFO_DATA_BIT |
431 |
|
|
| NRRD_BASIC_INFO_TYPE_BIT |
432 |
|
|
| NRRD_BASIC_INFO_BLOCKSIZE_BIT |
433 |
|
|
| NRRD_BASIC_INFO_DIMENSION_BIT |
434 |
|
|
| NRRD_BASIC_INFO_CONTENT_BIT |
435 |
|
|
| NRRD_BASIC_INFO_COMMENTS_BIT |
436 |
|
|
| (nrrdStateKeyValuePairsPropagate |
437 |
|
|
? 0 |
438 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) { |
439 |
|
|
biffAddf(NRRD, "%s:", me); |
440 |
|
|
return 1; |
441 |
|
|
} |
442 |
|
|
|
443 |
|
|
return 0; |
444 |
|
|
#undef LONGEST_INTERESTING_AXIS |
445 |
|
|
} |
446 |
|
|
|
447 |
|
|
/* ---- BEGIN non-NrrdIO */ |
448 |
|
|
|
449 |
|
|
|
450 |
|
|
/* |
451 |
|
|
******** nrrdAxesSwap() |
452 |
|
|
** |
453 |
|
|
** for when you just want to switch the order of two axes, without |
454 |
|
|
** going through the trouble of creating the permutation array |
455 |
|
|
** needed to call nrrdAxesPermute() |
456 |
|
|
*/ |
457 |
|
|
int |
458 |
|
|
nrrdAxesSwap(Nrrd *nout, const Nrrd *nin, unsigned int ax1, unsigned int ax2) { |
459 |
|
|
static const char me[]="nrrdAxesSwap", func[]="swap"; |
460 |
|
|
unsigned int ai, axmap[NRRD_DIM_MAX]; |
461 |
|
|
|
462 |
|
|
if (!(nout && nin)) { |
463 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
464 |
|
|
return 1; |
465 |
|
|
} |
466 |
|
|
if (!( ax1 < nin->dim && ax2 < nin->dim )) { |
467 |
|
|
biffAddf(NRRD, "%s: ax1 (%d) or ax2 (%d) out of bounds [0,%d]", |
468 |
|
|
me, ax1, ax2, nin->dim-1); |
469 |
|
|
return 1; |
470 |
|
|
} |
471 |
|
|
|
472 |
|
|
for (ai=0; ai<nin->dim; ai++) { |
473 |
|
|
axmap[ai] = ai; |
474 |
|
|
} |
475 |
|
|
axmap[ax2] = ax1; |
476 |
|
|
axmap[ax1] = ax2; |
477 |
|
|
if (nrrdAxesPermute(nout, nin, axmap) |
478 |
|
|
|| nrrdContentSet_va(nout, func, nin, "%d,%d", ax1, ax2)) { |
479 |
|
|
biffAddf(NRRD, "%s:", me); |
480 |
|
|
return 1; |
481 |
|
|
} |
482 |
|
|
/* basic info already copied by nrrdAxesPermute */ |
483 |
|
|
return 0; |
484 |
|
|
} |
485 |
|
|
|
486 |
|
|
/* |
487 |
|
|
******** nrrdFlip() |
488 |
|
|
** |
489 |
|
|
** reverse the order of slices along the given axis. |
490 |
|
|
** Actually, just a wrapper around nrrdShuffle() (with some |
491 |
|
|
** extra setting of axis info) |
492 |
|
|
*/ |
493 |
|
|
int |
494 |
|
|
nrrdFlip(Nrrd *nout, const Nrrd *nin, unsigned int axis) { |
495 |
|
|
static const char me[]="nrrdFlip", func[]="flip"; |
496 |
|
|
size_t *perm, si; |
497 |
|
|
airArray *mop; |
498 |
|
|
unsigned int axisIdx; |
499 |
|
|
|
500 |
|
|
mop = airMopNew(); |
501 |
|
|
if (!(nout && nin)) { |
502 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
503 |
|
|
airMopError(mop); return 1; |
504 |
|
|
} |
505 |
|
|
if (!( axis < nin->dim )) { |
506 |
|
|
biffAddf(NRRD, "%s: given axis (%d) is outside valid range ([0,%d])", |
507 |
|
|
me, axis, nin->dim-1); |
508 |
|
|
airMopError(mop); return 1; |
509 |
|
|
} |
510 |
|
|
if (!(perm = (size_t*)calloc(nin->axis[axis].size, sizeof(size_t)))) { |
511 |
|
|
biffAddf(NRRD, "%s: couldn't alloc permutation array", me); |
512 |
|
|
airMopError(mop); return 1; |
513 |
|
|
} |
514 |
|
|
airMopAdd(mop, perm, airFree, airMopAlways); |
515 |
|
|
for (si=0; si<nin->axis[axis].size; si++) { |
516 |
|
|
perm[si] = nin->axis[axis].size-1-si; |
517 |
|
|
} |
518 |
|
|
/* nrrdBasicInfoCopy called by nrrdShuffle() */ |
519 |
|
|
if (nrrdShuffle(nout, nin, axis, perm) |
520 |
|
|
|| nrrdContentSet_va(nout, func, nin, "%d", axis)) { |
521 |
|
|
biffAddf(NRRD, "%s:", me); |
522 |
|
|
airMopError(mop); return 1; |
523 |
|
|
} |
524 |
|
|
_nrrdAxisInfoCopy(&(nout->axis[axis]), &(nin->axis[axis]), |
525 |
|
|
NRRD_AXIS_INFO_SIZE_BIT |
526 |
|
|
| NRRD_AXIS_INFO_KIND_BIT); |
527 |
|
|
/* HEY: (Tue Jan 18 00:28:26 EST 2005) there's a basic question to |
528 |
|
|
be answered here: do we want to keep the "location" of the |
529 |
|
|
samples fixed, while changing their ordering, or do want to flip |
530 |
|
|
the location of the samples? In the former, the position |
531 |
|
|
information has to be flipped to cancel the flipping of the the |
532 |
|
|
sample order, so that samples maintain location. In the latter, |
533 |
|
|
the position information is copied verbatim from the original. */ |
534 |
|
|
/* (Tue Sep 13 09:59:12 EDT 2005) answer: we keep the "location" of |
535 |
|
|
the samples fixed, while changing their ordering. This is the |
536 |
|
|
low-level thing to do, so for a nrrd function, its the right thing |
537 |
|
|
to do. You don't need a nrrd function to simply manipulate |
538 |
|
|
per-axis meta-information */ |
539 |
|
|
nout->axis[axis].min = nin->axis[axis].max; |
540 |
|
|
nout->axis[axis].max = nin->axis[axis].min; |
541 |
|
|
/* HEY: Fri Jan 14 02:53:30 EST 2005: isn't spacing supposed to be |
542 |
|
|
the step from one sample to the next? So its a signed quantity. |
543 |
|
|
If min and max can be flipped (so min > max), then spacing can |
544 |
|
|
be negative, right? */ |
545 |
|
|
nout->axis[axis].spacing = -nin->axis[axis].spacing; |
546 |
|
|
/* HEY: Fri Jan 14 02:53:30 EST 2005: but not thickness */ |
547 |
|
|
nout->axis[axis].thickness = nin->axis[axis].thickness; |
548 |
|
|
/* need to set general orientation info too */ |
549 |
|
|
for (axisIdx=0; axisIdx<NRRD_SPACE_DIM_MAX; axisIdx++) { |
550 |
|
|
nout->axis[axis].spaceDirection[axisIdx] = |
551 |
|
|
-nin->axis[axis].spaceDirection[axisIdx]; |
552 |
|
|
} |
553 |
|
|
/* modify origin only if we flipped a spatial axis */ |
554 |
|
|
if (AIR_EXISTS(nin->axis[axis].spaceDirection[0])) { |
555 |
|
|
nrrdSpaceVecScaleAdd2(nout->spaceOrigin, |
556 |
|
|
1.0, |
557 |
|
|
nin->spaceOrigin, |
558 |
|
|
AIR_CAST(double, nin->axis[axis].size-1), |
559 |
|
|
nin->axis[axis].spaceDirection); |
560 |
|
|
} else { |
561 |
|
|
nrrdSpaceVecCopy(nout->spaceOrigin, nin->spaceOrigin); |
562 |
|
|
} |
563 |
|
|
airMopOkay(mop); |
564 |
|
|
return 0; |
565 |
|
|
} |
566 |
|
|
|
567 |
|
|
/* |
568 |
|
|
** |
569 |
|
|
** NOTE: this seems to destroy all space/orientation info. What |
570 |
|
|
** should be done? |
571 |
|
|
*/ |
572 |
|
|
int |
573 |
|
|
nrrdJoin(Nrrd *nout, const Nrrd *const *nin, unsigned int ninNum, |
574 |
|
|
unsigned int axis, int incrDim) { |
575 |
|
|
static const char me[]="nrrdJoin"; |
576 |
|
|
unsigned int ni, ai, mindim, maxdim, outdim, |
577 |
|
|
permute[NRRD_DIM_MAX], ipermute[NRRD_DIM_MAX]; |
578 |
|
|
int diffdim, axmap[NRRD_DIM_MAX]; |
579 |
|
|
size_t outlen, outnum, chunksize, size[NRRD_DIM_MAX]; |
580 |
|
|
char *dataPerm; |
581 |
|
|
Nrrd *ntmpperm, /* axis-permuted version of output */ |
582 |
|
|
**ninperm; |
583 |
|
|
airArray *mop; |
584 |
|
|
char stmp[2][AIR_STRLEN_SMALL]; |
585 |
|
|
|
586 |
|
|
/* error checking */ |
587 |
|
|
if (!(nout && nin)) { |
588 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
589 |
|
|
return 1; |
590 |
|
|
} |
591 |
|
|
if (!(ninNum >= 1)) { |
592 |
|
|
biffAddf(NRRD, "%s: ninNum (%d) must be >= 1", me, ninNum); |
593 |
|
|
return 1; |
594 |
|
|
} |
595 |
|
|
for (ni=0; ni<ninNum; ni++) { |
596 |
|
|
if (!(nin[ni])) { |
597 |
|
|
biffAddf(NRRD, "%s: input nrrd #%d NULL", me, ni); |
598 |
|
|
return 1; |
599 |
|
|
} |
600 |
|
|
if (nout==nin[ni]) { |
601 |
|
|
biffAddf(NRRD, "%s: nout==nin[%d] disallowed", me, ni); |
602 |
|
|
return 1; |
603 |
|
|
} |
604 |
|
|
} |
605 |
|
|
|
606 |
|
|
mop = airMopNew(); |
607 |
|
|
ninperm = AIR_CALLOC(ninNum, Nrrd *); |
608 |
|
|
if (!(ninperm)) { |
609 |
|
|
biffAddf(NRRD, "%s: couldn't calloc() temp nrrd array", me); |
610 |
|
|
airMopError(mop); return 1; |
611 |
|
|
} |
612 |
|
|
airMopAdd(mop, ninperm, airFree, airMopAlways); |
613 |
|
|
|
614 |
|
|
maxdim = mindim = nin[0]->dim; |
615 |
|
|
for (ni=0; ni<ninNum; ni++) { |
616 |
|
|
mindim = AIR_MIN(mindim, nin[ni]->dim); |
617 |
|
|
maxdim = AIR_MAX(maxdim, nin[ni]->dim); |
618 |
|
|
} |
619 |
|
|
diffdim = maxdim - mindim; |
620 |
|
|
if (diffdim > 1) { |
621 |
|
|
biffAddf(NRRD, "%s: will only reshape up one dimension (not %d)", |
622 |
|
|
me, diffdim); |
623 |
|
|
airMopError(mop); return 1; |
624 |
|
|
} |
625 |
|
|
if (axis > maxdim) { |
626 |
|
|
biffAddf(NRRD, "%s: can't join along axis %d with highest input dim = %d", |
627 |
|
|
me, axis, maxdim); |
628 |
|
|
airMopError(mop); return 1; |
629 |
|
|
} |
630 |
|
|
|
631 |
|
|
/* figure out dimension of output (outdim) */ |
632 |
|
|
if (diffdim) { |
633 |
|
|
/* case A: (example) 2D slices and 3D slabs are being joined |
634 |
|
|
together to make a bigger 3D volume */ |
635 |
|
|
outdim = maxdim; |
636 |
|
|
} else { |
637 |
|
|
/* diffdim == 0 */ |
638 |
|
|
if (axis == maxdim) { |
639 |
|
|
/* case B: this is like the old "stitch": a bunch of equal-sized |
640 |
|
|
slices of dimension N are being stacked together to make an |
641 |
|
|
N+1 dimensional volume, which is essentially just the result of |
642 |
|
|
concatenating the memory of individual inputs */ |
643 |
|
|
outdim = maxdim + 1; |
644 |
|
|
} else { |
645 |
|
|
/* case C: axis < maxdim; maxdim == mindim */ |
646 |
|
|
/* case C1 (!incrDim): a bunch of N-D slabs are being joined |
647 |
|
|
together to make a bigger N-D volume. The axis along which |
648 |
|
|
they are being joined could be any of existing axes (from 0 |
649 |
|
|
to maxdim-1) */ |
650 |
|
|
/* case C2 (incrDim): this is also a "stitch", but the new axis |
651 |
|
|
created by the stitching is inserted into the existing |
652 |
|
|
axes. (ex: stitch 3 PGMs (R, G, B) together into a PPM (with |
653 |
|
|
color on axis zero) */ |
654 |
|
|
outdim = maxdim + !!incrDim; |
655 |
|
|
} |
656 |
|
|
} |
657 |
|
|
if (outdim > NRRD_DIM_MAX) { |
658 |
|
|
biffAddf(NRRD, "%s: output dimension (%d) exceeds NRRD_DIM_MAX (%d)", |
659 |
|
|
me, outdim, NRRD_DIM_MAX); |
660 |
|
|
airMopError(mop); return 1; |
661 |
|
|
} |
662 |
|
|
|
663 |
|
|
/* do tacit reshaping, and possibly permuting, as needed */ |
664 |
|
|
for (ai=0; ai<outdim; ai++) { |
665 |
|
|
permute[ai] = (ai < axis |
666 |
|
|
? ai |
667 |
|
|
: (ai < outdim-1 |
668 |
|
|
? ai + 1 |
669 |
|
|
: axis)); |
670 |
|
|
/* fprintf(stderr, "!%s: 1st permute[%d] = %d\n", me, ai, permute[ai]); */ |
671 |
|
|
} |
672 |
|
|
for (ni=0; ni<ninNum; ni++) { |
673 |
|
|
ninperm[ni] = nrrdNew(); |
674 |
|
|
diffdim = outdim - nin[ni]->dim; |
675 |
|
|
/* fprintf(stderr, "!%s: ni = %d ---> diffdim = %d\n", me, ni, diffdim); */ |
676 |
|
|
if (diffdim) { |
677 |
|
|
/* we do a tacit reshaping, which actually includes |
678 |
|
|
a tacit permuting, so we don't have to call permute |
679 |
|
|
on the parts that don't actually need it */ |
680 |
|
|
/* NB: we register nrrdNix, not nrrdNuke */ |
681 |
|
|
/* fprintf(stderr, "!%s: %d: tacit reshape/permute\n", me, ni); */ |
682 |
|
|
airMopAdd(mop, ninperm[ni], (airMopper)nrrdNix, airMopAlways); |
683 |
|
|
nrrdAxisInfoGet_nva(nin[ni], nrrdAxisInfoSize, size); |
684 |
|
|
for (ai=nin[ni]->dim-1; ai>=mindim+1; ai--) { |
685 |
|
|
size[ai] = size[ai-1]; |
686 |
|
|
} |
687 |
|
|
size[mindim] = 1; |
688 |
|
|
/* this may be done needlessly often */ |
689 |
|
|
for (ai=0; ai<=nin[ni]->dim; ai++) { |
690 |
|
|
if (ai < mindim) { |
691 |
|
|
axmap[ai] = ai; |
692 |
|
|
} else if (ai > mindim) { |
693 |
|
|
axmap[ai] = ai-1; |
694 |
|
|
} else { |
695 |
|
|
axmap[ai] = -1; |
696 |
|
|
} |
697 |
|
|
} |
698 |
|
|
/* we don't have to actually call nrrdReshape(): we just nrrdWrap() |
699 |
|
|
the input data with the reshaped size array */ |
700 |
|
|
if (nrrdWrap_nva(ninperm[ni], nin[ni]->data, nin[ni]->type, |
701 |
|
|
nin[ni]->dim+1, size)) { |
702 |
|
|
biffAddf(NRRD, "%s: trouble creating interm. version of nrrd %d", |
703 |
|
|
me, ni); |
704 |
|
|
airMopError(mop); return 1; |
705 |
|
|
} |
706 |
|
|
nrrdAxisInfoCopy(ninperm[ni], nin[ni], axmap, |
707 |
|
|
(NRRD_AXIS_INFO_SIZE_BIT |
708 |
|
|
/* HEY: this is being nixed because I can't think |
709 |
|
|
of a sane way of keeping it consistent */ |
710 |
|
|
| NRRD_AXIS_INFO_SPACEDIRECTION_BIT)); |
711 |
|
|
} else { |
712 |
|
|
/* on this part, we permute (no need for a reshape) */ |
713 |
|
|
airMopAdd(mop, ninperm[ni], (airMopper)nrrdNuke, airMopAlways); |
714 |
|
|
if (nrrdAxesPermute(ninperm[ni], nin[ni], permute)) { |
715 |
|
|
biffAddf(NRRD, "%s: trouble permuting input part %d", me, ni); |
716 |
|
|
airMopError(mop); return 1; |
717 |
|
|
} |
718 |
|
|
} |
719 |
|
|
} |
720 |
|
|
|
721 |
|
|
/* make sure all parts are compatible in type and shape, |
722 |
|
|
determine length of final output along axis (outlen) */ |
723 |
|
|
outlen = 0; |
724 |
|
|
for (ni=0; ni<ninNum; ni++) { |
725 |
|
|
if (ninperm[ni]->type != ninperm[0]->type) { |
726 |
|
|
biffAddf(NRRD, "%s: type (%s) of part %d unlike first's (%s)", |
727 |
|
|
me, airEnumStr(nrrdType, ninperm[ni]->type), |
728 |
|
|
ni, airEnumStr(nrrdType, ninperm[0]->type)); |
729 |
|
|
airMopError(mop); return 1; |
730 |
|
|
} |
731 |
|
|
if (nrrdTypeBlock == ninperm[0]->type) { |
732 |
|
|
if (ninperm[ni]->blockSize != ninperm[0]->blockSize) { |
733 |
|
|
biffAddf(NRRD, "%s: blockSize (%s) of part %d != first's (%s)", me, |
734 |
|
|
airSprintSize_t(stmp[0], ninperm[ni]->blockSize), ni, |
735 |
|
|
airSprintSize_t(stmp[1], ninperm[0]->blockSize)); |
736 |
|
|
airMopError(mop); return 1; |
737 |
|
|
} |
738 |
|
|
} |
739 |
|
|
if (!nrrdElementSize(ninperm[ni])) { |
740 |
|
|
biffAddf(NRRD, "%s: got wacky elements size (%s) for part %d", me, |
741 |
|
|
airSprintSize_t(stmp[0], nrrdElementSize(ninperm[ni])), ni); |
742 |
|
|
airMopError(mop); return 1; |
743 |
|
|
} |
744 |
|
|
|
745 |
|
|
/* fprintf(stderr, "!%s: part %03d shape: ", me, ni); */ |
746 |
|
|
for (ai=0; ai<outdim-1; ai++) { |
747 |
|
|
/* fprintf(stderr, "%03u ", (unsigned int)ninperm[ni]->axis[ai].size);*/ |
748 |
|
|
if (ninperm[ni]->axis[ai].size != ninperm[0]->axis[ai].size) { |
749 |
|
|
biffAddf(NRRD, "%s: axis %d size (%s) of part %d != first's (%s)", me, |
750 |
|
|
ai, airSprintSize_t(stmp[0], ninperm[ni]->axis[ai].size), |
751 |
|
|
ni, airSprintSize_t(stmp[1], ninperm[0]->axis[ai].size)); |
752 |
|
|
airMopError(mop); return 1; |
753 |
|
|
} |
754 |
|
|
} |
755 |
|
|
/* |
756 |
|
|
fprintf(stderr, "%03u\n", (unsigned int)ninperm[ni]->axis[outdim-1].size); |
757 |
|
|
*/ |
758 |
|
|
outlen += ninperm[ni]->axis[outdim-1].size; |
759 |
|
|
} |
760 |
|
|
/* fprintf(stderr, "!%s: outlen = %u\n", me, (unsigned int)outlen); */ |
761 |
|
|
|
762 |
|
|
/* allocate temporary nrrd and concat input into it */ |
763 |
|
|
outnum = 1; |
764 |
|
|
if (outdim > 1) { |
765 |
|
|
for (ai=0; ai<outdim-1; ai++) { |
766 |
|
|
size[ai] = ninperm[0]->axis[ai].size; |
767 |
|
|
outnum *= size[ai]; |
768 |
|
|
} |
769 |
|
|
} |
770 |
|
|
size[outdim-1] = outlen; |
771 |
|
|
outnum *= size[outdim-1]; |
772 |
|
|
if (nrrdMaybeAlloc_nva(ntmpperm = nrrdNew(), ninperm[0]->type, |
773 |
|
|
outdim, size)) { |
774 |
|
|
biffAddf(NRRD, "%s: trouble allocating permutation nrrd", me); |
775 |
|
|
airMopError(mop); return 1; |
776 |
|
|
} |
777 |
|
|
airMopAdd(mop, ntmpperm, (airMopper)nrrdNuke, airMopAlways); |
778 |
|
|
dataPerm = AIR_CAST(char *, ntmpperm->data); |
779 |
|
|
for (ni=0; ni<ninNum; ni++) { |
780 |
|
|
/* here is where the actual joining happens */ |
781 |
|
|
chunksize = nrrdElementNumber(ninperm[ni])*nrrdElementSize(ninperm[ni]); |
782 |
|
|
memcpy(dataPerm, ninperm[ni]->data, chunksize); |
783 |
|
|
dataPerm += chunksize; |
784 |
|
|
} |
785 |
|
|
|
786 |
|
|
/* copy other axis-specific fields from nin[0] to ntmpperm */ |
787 |
|
|
for (ai=0; ai<outdim-1; ai++) { |
788 |
|
|
axmap[ai] = ai; |
789 |
|
|
} |
790 |
|
|
axmap[outdim-1] = -1; |
791 |
|
|
nrrdAxisInfoCopy(ntmpperm, ninperm[0], axmap, |
792 |
|
|
(NRRD_AXIS_INFO_NONE |
793 |
|
|
/* HEY: this is being nixed because I can't think |
794 |
|
|
of a sane way of keeping it consistent */ |
795 |
|
|
| NRRD_AXIS_INFO_SPACEDIRECTION_BIT)); |
796 |
|
|
ntmpperm->axis[outdim-1].size = outlen; |
797 |
|
|
|
798 |
|
|
/* do the permutation required to get output in right order */ |
799 |
|
|
if (nrrdInvertPerm(ipermute, permute, outdim) |
800 |
|
|
|| nrrdAxesPermute(nout, ntmpperm, ipermute)) { |
801 |
|
|
biffAddf(NRRD, "%s: error permuting temporary nrrd", me); |
802 |
|
|
airMopError(mop); return 1; |
803 |
|
|
} |
804 |
|
|
/* basic info is either already set or invalidated by joining */ |
805 |
|
|
|
806 |
|
|
/* HEY: set content on output! */ |
807 |
|
|
|
808 |
|
|
airMopOkay(mop); |
809 |
|
|
return 0; |
810 |
|
|
} |
811 |
|
|
|
812 |
|
|
/* |
813 |
|
|
******** nrrdAxesSplit |
814 |
|
|
** |
815 |
|
|
** like reshape, but only for splitting one axis into a fast and slow part. |
816 |
|
|
*/ |
817 |
|
|
int |
818 |
|
|
nrrdAxesSplit(Nrrd *nout, const Nrrd *nin, |
819 |
|
|
unsigned int saxi, size_t sizeFast, size_t sizeSlow) { |
820 |
|
|
static const char me[]="nrrdAxesSplit", func[]="axsplit"; |
821 |
|
|
unsigned int ai; |
822 |
|
|
|
823 |
|
|
if (!(nout && nin)) { |
824 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
825 |
|
|
return 1; |
826 |
|
|
} |
827 |
|
|
if (!( saxi <= nin->dim-1 )) { |
828 |
|
|
biffAddf(NRRD, "%s: given axis (%d) outside valid range [0, %d]", |
829 |
|
|
me, saxi, nin->dim-1); |
830 |
|
|
return 1; |
831 |
|
|
} |
832 |
|
|
if (NRRD_DIM_MAX == nin->dim) { |
833 |
|
|
biffAddf(NRRD, "%s: given nrrd already at NRRD_DIM_MAX (%d)", |
834 |
|
|
me, NRRD_DIM_MAX); |
835 |
|
|
return 1; |
836 |
|
|
} |
837 |
|
|
if (!(sizeFast*sizeSlow == nin->axis[saxi].size)) { |
838 |
|
|
char stmp[4][AIR_STRLEN_SMALL]; |
839 |
|
|
biffAddf(NRRD, "%s: # samples along axis %d (%s) != " |
840 |
|
|
"product of fast and slow sizes (%s * %s = %s)", me, saxi, |
841 |
|
|
airSprintSize_t(stmp[0], nin->axis[saxi].size), |
842 |
|
|
airSprintSize_t(stmp[1], sizeFast), |
843 |
|
|
airSprintSize_t(stmp[2], sizeSlow), |
844 |
|
|
airSprintSize_t(stmp[3], sizeFast*sizeSlow)); |
845 |
|
|
return 1; |
846 |
|
|
} |
847 |
|
|
if (nout != nin) { |
848 |
|
|
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT |
849 |
|
|
| (nrrdStateKeyValuePairsPropagate |
850 |
|
|
? 0 |
851 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) { |
852 |
|
|
biffAddf(NRRD, "%s:", me); |
853 |
|
|
return 1; |
854 |
|
|
} |
855 |
|
|
} |
856 |
|
|
nout->dim = 1 + nin->dim; |
857 |
|
|
for (ai=nin->dim-1; ai>=saxi+1; ai--) { |
858 |
|
|
_nrrdAxisInfoCopy(&(nout->axis[ai+1]), &(nin->axis[ai]), |
859 |
|
|
NRRD_AXIS_INFO_NONE); |
860 |
|
|
} |
861 |
|
|
/* the ONLY thing we can say about the new axes are their sizes */ |
862 |
|
|
_nrrdAxisInfoInit(&(nout->axis[saxi])); |
863 |
|
|
_nrrdAxisInfoInit(&(nout->axis[saxi+1])); |
864 |
|
|
nout->axis[saxi].size = sizeFast; |
865 |
|
|
nout->axis[saxi+1].size = sizeSlow; |
866 |
|
|
if (nrrdContentSet_va(nout, func, nin, "%d,%d,%d", |
867 |
|
|
saxi, sizeFast, sizeSlow)) { |
868 |
|
|
biffAddf(NRRD, "%s:", me); |
869 |
|
|
return 1; |
870 |
|
|
} |
871 |
|
|
/* all basic information already copied by nrrdCopy */ |
872 |
|
|
return 0; |
873 |
|
|
} |
874 |
|
|
|
875 |
|
|
/* |
876 |
|
|
******** nrrdAxesDelete |
877 |
|
|
** |
878 |
|
|
** like reshape, but preserves axis information on old axes, and |
879 |
|
|
** this is only for removing a "stub" axis with length 1. |
880 |
|
|
*/ |
881 |
|
|
int |
882 |
|
|
nrrdAxesDelete(Nrrd *nout, const Nrrd *nin, unsigned int daxi) { |
883 |
|
|
static const char me[]="nrrdAxesDelete", func[]="axdelete"; |
884 |
|
|
unsigned int ai; |
885 |
|
|
|
886 |
|
|
if (!(nout && nin)) { |
887 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
888 |
|
|
return 1; |
889 |
|
|
} |
890 |
|
|
if (!( daxi < nin->dim )) { |
891 |
|
|
biffAddf(NRRD, "%s: given axis (%d) outside valid range [0, %d]", |
892 |
|
|
me, daxi, nin->dim-1); |
893 |
|
|
return 1; |
894 |
|
|
} |
895 |
|
|
if (1 == nin->dim) { |
896 |
|
|
biffAddf(NRRD, "%s: given nrrd already at lowest dimension (1)", me); |
897 |
|
|
return 1; |
898 |
|
|
} |
899 |
|
|
if (1 != nin->axis[daxi].size) { |
900 |
|
|
char stmp[AIR_STRLEN_SMALL]; |
901 |
|
|
biffAddf(NRRD, "%s: size along axis %d is %s, not 1", me, daxi, |
902 |
|
|
airSprintSize_t(stmp, nin->axis[daxi].size)); |
903 |
|
|
return 1; |
904 |
|
|
} |
905 |
|
|
if (nout != nin) { |
906 |
|
|
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT |
907 |
|
|
| (nrrdStateKeyValuePairsPropagate |
908 |
|
|
? 0 |
909 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) { |
910 |
|
|
biffAddf(NRRD, "%s:", me); |
911 |
|
|
return 1; |
912 |
|
|
} |
913 |
|
|
} |
914 |
|
|
for (ai=daxi; ai<nin->dim-1; ai++) { |
915 |
|
|
_nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai+1]), |
916 |
|
|
NRRD_AXIS_INFO_NONE); |
917 |
|
|
} |
918 |
|
|
nout->dim = nin->dim - 1; |
919 |
|
|
if (nrrdContentSet_va(nout, func, nin, "%d", daxi)) { |
920 |
|
|
biffAddf(NRRD, "%s:", me); |
921 |
|
|
return 1; |
922 |
|
|
} |
923 |
|
|
/* all basic information already copied by nrrdCopy */ |
924 |
|
|
return 0; |
925 |
|
|
} |
926 |
|
|
|
927 |
|
|
/* |
928 |
|
|
******** nrrdAxesMerge |
929 |
|
|
** |
930 |
|
|
** like reshape, but preserves axis information on old axes |
931 |
|
|
** merges axis ax and ax+1 into one |
932 |
|
|
*/ |
933 |
|
|
int |
934 |
|
|
nrrdAxesMerge(Nrrd *nout, const Nrrd *nin, unsigned int maxi) { |
935 |
|
|
static const char me[]="nrrdAxesMerge", func[]="axmerge"; |
936 |
|
|
unsigned int ai; |
937 |
|
|
size_t sizeFast, sizeSlow; |
938 |
|
|
|
939 |
|
|
if (!(nout && nin)) { |
940 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
941 |
|
|
return 1; |
942 |
|
|
} |
943 |
|
|
if (!( maxi < nin->dim-1 )) { |
944 |
|
|
biffAddf(NRRD, "%s: given axis (%d) outside valid range [0, %d]", |
945 |
|
|
me, maxi, nin->dim-2); |
946 |
|
|
return 1; |
947 |
|
|
} |
948 |
|
|
if (1 == nin->dim) { |
949 |
|
|
biffAddf(NRRD, "%s: given nrrd already at lowest dimension (1)", me); |
950 |
|
|
return 1; |
951 |
|
|
} |
952 |
|
|
if (nout != nin) { |
953 |
|
|
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT |
954 |
|
|
| (nrrdStateKeyValuePairsPropagate |
955 |
|
|
? 0 |
956 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) { |
957 |
|
|
biffAddf(NRRD, "%s:", me); |
958 |
|
|
return 1; |
959 |
|
|
} |
960 |
|
|
} |
961 |
|
|
sizeFast = nin->axis[maxi].size; |
962 |
|
|
sizeSlow = nin->axis[maxi+1].size; |
963 |
|
|
nout->dim = nin->dim - 1; |
964 |
|
|
for (ai=maxi+1; ai<nout->dim; ai++) { |
965 |
|
|
_nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai+1]), |
966 |
|
|
NRRD_AXIS_INFO_NONE); |
967 |
|
|
} |
968 |
|
|
/* the ONLY thing we can say about the new axis is its size */ |
969 |
|
|
_nrrdAxisInfoInit(&(nout->axis[maxi])); |
970 |
|
|
nout->axis[maxi].size = sizeFast*sizeSlow; |
971 |
|
|
if (nrrdContentSet_va(nout, func, nin, "%d", maxi)) { |
972 |
|
|
biffAddf(NRRD, "%s:", me); |
973 |
|
|
return 1; |
974 |
|
|
} |
975 |
|
|
/* all basic information already copied by nrrdCopy */ |
976 |
|
|
return 0; |
977 |
|
|
} |
978 |
|
|
|
979 |
|
|
/* |
980 |
|
|
******** nrrdReshape_nva() |
981 |
|
|
** |
982 |
|
|
*/ |
983 |
|
|
int |
984 |
|
|
nrrdReshape_nva(Nrrd *nout, const Nrrd *nin, |
985 |
|
|
unsigned int dim, const size_t *size) { |
986 |
|
|
static const char me[]="nrrdReshape_nva", func[]="reshape"; |
987 |
|
|
char buff1[NRRD_DIM_MAX*30], buff2[AIR_STRLEN_SMALL]; |
988 |
|
|
size_t numOut; |
989 |
|
|
unsigned int ai; |
990 |
|
|
char stmp[2][AIR_STRLEN_SMALL]; |
991 |
|
|
|
992 |
|
|
if (!(nout && nin && size)) { |
993 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
994 |
|
|
return 1; |
995 |
|
|
} |
996 |
|
|
if (!(AIR_IN_CL(1, dim, NRRD_DIM_MAX))) { |
997 |
|
|
biffAddf(NRRD, "%s: given dimension (%d) outside valid range [1,%d]", |
998 |
|
|
me, dim, NRRD_DIM_MAX); |
999 |
|
|
return 1; |
1000 |
|
|
} |
1001 |
|
|
if (_nrrdSizeCheck(size, dim, AIR_TRUE)) { |
1002 |
|
|
biffAddf(NRRD, "%s:", me); |
1003 |
|
|
return 1; |
1004 |
|
|
} |
1005 |
|
|
numOut = 1; |
1006 |
|
|
for (ai=0; ai<dim; ai++) { |
1007 |
|
|
numOut *= size[ai]; |
1008 |
|
|
} |
1009 |
|
|
if (numOut != nrrdElementNumber(nin)) { |
1010 |
|
|
biffAddf(NRRD, "%s: new sizes product (%s) != # elements (%s)", me, |
1011 |
|
|
airSprintSize_t(stmp[0], numOut), |
1012 |
|
|
airSprintSize_t(stmp[1], nrrdElementNumber(nin))); |
1013 |
|
|
return 1; |
1014 |
|
|
} |
1015 |
|
|
|
1016 |
|
|
if (nout != nin) { |
1017 |
|
|
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT |
1018 |
|
|
| (nrrdStateKeyValuePairsPropagate |
1019 |
|
|
? 0 |
1020 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) { |
1021 |
|
|
biffAddf(NRRD, "%s:", me); |
1022 |
|
|
return 1; |
1023 |
|
|
} |
1024 |
|
|
} |
1025 |
|
|
nout->dim = dim; |
1026 |
|
|
for (ai=0; ai<dim; ai++) { |
1027 |
|
|
/* the ONLY thing we can say about the axes is the size */ |
1028 |
|
|
_nrrdAxisInfoInit(&(nout->axis[ai])); |
1029 |
|
|
nout->axis[ai].size = size[ai]; |
1030 |
|
|
} |
1031 |
|
|
|
1032 |
|
|
strcpy(buff1, ""); |
1033 |
|
|
for (ai=0; ai<dim; ai++) { |
1034 |
|
|
sprintf(buff2, "%s%s", (ai ? "x" : ""), |
1035 |
|
|
airSprintSize_t(stmp[0], size[ai])); |
1036 |
|
|
strcat(buff1, buff2); |
1037 |
|
|
} |
1038 |
|
|
/* basic info copied by _nrrdCopy, but probably more than we |
1039 |
|
|
want- perhaps space dimension and origin should be nixed? */ |
1040 |
|
|
if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) { |
1041 |
|
|
biffAddf(NRRD, "%s:", me); |
1042 |
|
|
return 1; |
1043 |
|
|
} |
1044 |
|
|
return 0; |
1045 |
|
|
} |
1046 |
|
|
|
1047 |
|
|
/* |
1048 |
|
|
******** nrrdReshape_va() |
1049 |
|
|
** |
1050 |
|
|
** var-args version of nrrdReshape_nva() |
1051 |
|
|
*/ |
1052 |
|
|
int |
1053 |
|
|
nrrdReshape_va(Nrrd *nout, const Nrrd *nin, unsigned int dim, ...) { |
1054 |
|
|
static const char me[]="nrrdReshape_va"; |
1055 |
|
|
unsigned int ai; |
1056 |
|
|
size_t size[NRRD_DIM_MAX]; |
1057 |
|
|
va_list ap; |
1058 |
|
|
|
1059 |
|
|
if (!(nout && nin)) { |
1060 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
1061 |
|
|
return 1; |
1062 |
|
|
} |
1063 |
|
|
if (!(AIR_IN_CL(1, dim, NRRD_DIM_MAX))) { |
1064 |
|
|
biffAddf(NRRD, "%s: given dimension (%d) outside valid range [1,%d]", |
1065 |
|
|
me, dim, NRRD_DIM_MAX); |
1066 |
|
|
return 1; |
1067 |
|
|
} |
1068 |
|
|
va_start(ap, dim); |
1069 |
|
|
for (ai=0; ai<dim; ai++) { |
1070 |
|
|
size[ai] = va_arg(ap, size_t); |
1071 |
|
|
} |
1072 |
|
|
va_end(ap); |
1073 |
|
|
/* basic info copied (indirectly) by nrrdReshape_nva() */ |
1074 |
|
|
if (nrrdReshape_nva(nout, nin, dim, size)) { |
1075 |
|
|
biffAddf(NRRD, "%s:", me); |
1076 |
|
|
return 1; |
1077 |
|
|
} |
1078 |
|
|
|
1079 |
|
|
return 0; |
1080 |
|
|
} |
1081 |
|
|
|
1082 |
|
|
/* |
1083 |
|
|
******** nrrdBlock() |
1084 |
|
|
** |
1085 |
|
|
** collapse the first axis (axis 0) of the nrrd into a block, making |
1086 |
|
|
** an output nrrd of type nrrdTypeBlock. The input type can be block. |
1087 |
|
|
** All information for other axes is shifted down one axis. |
1088 |
|
|
*/ |
1089 |
|
|
int |
1090 |
|
|
nrrdBlock(Nrrd *nout, const Nrrd *nin) { |
1091 |
|
|
static const char me[]="nrrdBlock", func[]="block"; |
1092 |
|
|
unsigned int ai; |
1093 |
|
|
size_t numEl, size[NRRD_DIM_MAX]; |
1094 |
|
|
int map[NRRD_DIM_MAX]; |
1095 |
|
|
|
1096 |
|
|
if (!(nout && nin)) { |
1097 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
1098 |
|
|
return 1; |
1099 |
|
|
} |
1100 |
|
|
if (nout == nin) { |
1101 |
|
|
biffAddf(NRRD, "%s: due to laziness, nout==nin disallowed", me); |
1102 |
|
|
return 1; |
1103 |
|
|
} |
1104 |
|
|
if (1 == nin->dim) { |
1105 |
|
|
biffAddf(NRRD, "%s: can't blockify 1-D nrrd", me); |
1106 |
|
|
return 1; |
1107 |
|
|
} |
1108 |
|
|
/* this shouldn't actually be necessary .. */ |
1109 |
|
|
if (!nrrdElementSize(nin)) { |
1110 |
|
|
biffAddf(NRRD, "%s: nrrd reports zero element size!", me); |
1111 |
|
|
return 1; |
1112 |
|
|
} |
1113 |
|
|
|
1114 |
|
|
numEl = nin->axis[0].size;; |
1115 |
|
|
nout->blockSize = numEl*nrrdElementSize(nin); |
1116 |
|
|
/* |
1117 |
|
|
fprintf(stderr, "!%s: nout->blockSize = %d * %d = %d\n", me, |
1118 |
|
|
numEl, nrrdElementSize(nin), nout->blockSize); |
1119 |
|
|
*/ |
1120 |
|
|
for (ai=0; ai<nin->dim-1; ai++) { |
1121 |
|
|
map[ai] = ai+1; |
1122 |
|
|
size[ai] = nin->axis[map[ai]].size; |
1123 |
|
|
} |
1124 |
|
|
|
1125 |
|
|
/* nout->blockSize set above */ |
1126 |
|
|
if (nrrdMaybeAlloc_nva(nout, nrrdTypeBlock, nin->dim-1, size)) { |
1127 |
|
|
biffAddf(NRRD, "%s: failed to allocate output", me); |
1128 |
|
|
return 1; |
1129 |
|
|
} |
1130 |
|
|
memcpy(nout->data, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin)); |
1131 |
|
|
if (nrrdAxisInfoCopy(nout, nin, map, NRRD_AXIS_INFO_NONE)) { |
1132 |
|
|
biffAddf(NRRD, "%s: failed to copy axes", me); |
1133 |
|
|
return 1; |
1134 |
|
|
} |
1135 |
|
|
if (nrrdContentSet_va(nout, func, nin, "")) { |
1136 |
|
|
biffAddf(NRRD, "%s:", me); |
1137 |
|
|
return 1; |
1138 |
|
|
} |
1139 |
|
|
if (nrrdBasicInfoCopy(nout, nin, |
1140 |
|
|
NRRD_BASIC_INFO_DATA_BIT |
1141 |
|
|
| NRRD_BASIC_INFO_TYPE_BIT |
1142 |
|
|
| NRRD_BASIC_INFO_BLOCKSIZE_BIT |
1143 |
|
|
| NRRD_BASIC_INFO_DIMENSION_BIT |
1144 |
|
|
| NRRD_BASIC_INFO_CONTENT_BIT |
1145 |
|
|
| NRRD_BASIC_INFO_COMMENTS_BIT |
1146 |
|
|
| (nrrdStateKeyValuePairsPropagate |
1147 |
|
|
? 0 |
1148 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) { |
1149 |
|
|
biffAddf(NRRD, "%s:", me); |
1150 |
|
|
return 1; |
1151 |
|
|
} |
1152 |
|
|
return 0; |
1153 |
|
|
} |
1154 |
|
|
|
1155 |
|
|
/* |
1156 |
|
|
******** nrrdUnblock() |
1157 |
|
|
** |
1158 |
|
|
** takes a nrrdTypeBlock nrrd and breaks the blocks into elements of |
1159 |
|
|
** type "type", and shifts other axis information up by one axis |
1160 |
|
|
*/ |
1161 |
|
|
int |
1162 |
|
|
nrrdUnblock(Nrrd *nout, const Nrrd *nin, int type) { |
1163 |
|
|
static const char me[]="nrrdUnblock", func[]="unblock"; |
1164 |
|
|
unsigned int dim; |
1165 |
|
|
size_t size[NRRD_DIM_MAX], outElSz; |
1166 |
|
|
int map[NRRD_DIM_MAX]; |
1167 |
|
|
char stmp[2][AIR_STRLEN_SMALL]; |
1168 |
|
|
|
1169 |
|
|
if (!(nout && nin)) { |
1170 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
1171 |
|
|
return 1; |
1172 |
|
|
} |
1173 |
|
|
if (nout == nin) { |
1174 |
|
|
biffAddf(NRRD, "%s: due to laziness, nout==nin disallowed", me); |
1175 |
|
|
return 1; |
1176 |
|
|
} |
1177 |
|
|
if (nrrdTypeBlock != nin->type) { |
1178 |
|
|
biffAddf(NRRD, "%s: need input nrrd type %s", me, |
1179 |
|
|
airEnumStr(nrrdType, nrrdTypeBlock)); |
1180 |
|
|
return 1; |
1181 |
|
|
} |
1182 |
|
|
if (NRRD_DIM_MAX == nin->dim) { |
1183 |
|
|
biffAddf(NRRD, "%s: input nrrd already at dimension limit (%d)", |
1184 |
|
|
me, NRRD_DIM_MAX); |
1185 |
|
|
return 1; |
1186 |
|
|
} |
1187 |
|
|
if (airEnumValCheck(nrrdType, type)) { |
1188 |
|
|
biffAddf(NRRD, "%s: invalid requested type %d", me, type); |
1189 |
|
|
return 1; |
1190 |
|
|
} |
1191 |
|
|
if (nrrdTypeBlock == type && (!(0 < nout->blockSize))) { |
1192 |
|
|
biffAddf(NRRD, "%s: for %s type, need nout->blockSize set", me, |
1193 |
|
|
airEnumStr(nrrdType, nrrdTypeBlock)); |
1194 |
|
|
return 1; |
1195 |
|
|
} |
1196 |
|
|
/* this shouldn't actually be necessary .. */ |
1197 |
|
|
if (!(nrrdElementSize(nin))) { |
1198 |
|
|
biffAddf(NRRD, "%s: nin or nout reports zero element size!", me); |
1199 |
|
|
return 1; |
1200 |
|
|
} |
1201 |
|
|
|
1202 |
|
|
nout->type = type; |
1203 |
|
|
outElSz = nrrdElementSize(nout); |
1204 |
|
|
if (nin->blockSize % outElSz) { |
1205 |
|
|
biffAddf(NRRD, "%s: input blockSize (%s) not multiple of output " |
1206 |
|
|
"element size (%s)", me, |
1207 |
|
|
airSprintSize_t(stmp[0], nin->blockSize), |
1208 |
|
|
airSprintSize_t(stmp[1], outElSz)); |
1209 |
|
|
return 1; |
1210 |
|
|
} |
1211 |
|
|
for (dim=0; dim<=nin->dim; dim++) { |
1212 |
|
|
map[dim] = !dim ? -1 : (int)dim-1; |
1213 |
|
|
size[dim] = !dim ? nin->blockSize / outElSz : nin->axis[map[dim]].size; |
1214 |
|
|
} |
1215 |
|
|
/* if nout->blockSize is needed, we've checked that its set */ |
1216 |
|
|
if (nrrdMaybeAlloc_nva(nout, type, nin->dim+1, size)) { |
1217 |
|
|
biffAddf(NRRD, "%s: failed to allocate output", me); |
1218 |
|
|
return 1; |
1219 |
|
|
} |
1220 |
|
|
memcpy(nout->data, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin)); |
1221 |
|
|
if (nrrdAxisInfoCopy(nout, nin, map, NRRD_AXIS_INFO_NONE)) { |
1222 |
|
|
biffAddf(NRRD, "%s: failed to copy axes", me); |
1223 |
|
|
return 1; |
1224 |
|
|
} |
1225 |
|
|
if (nrrdContentSet_va(nout, func, nin, "")) { |
1226 |
|
|
biffAddf(NRRD, "%s:", me); |
1227 |
|
|
return 1; |
1228 |
|
|
} |
1229 |
|
|
if (nrrdBasicInfoCopy(nout, nin, |
1230 |
|
|
NRRD_BASIC_INFO_DATA_BIT |
1231 |
|
|
| NRRD_BASIC_INFO_TYPE_BIT |
1232 |
|
|
| NRRD_BASIC_INFO_BLOCKSIZE_BIT |
1233 |
|
|
| NRRD_BASIC_INFO_DIMENSION_BIT |
1234 |
|
|
| NRRD_BASIC_INFO_CONTENT_BIT |
1235 |
|
|
| NRRD_BASIC_INFO_COMMENTS_BIT |
1236 |
|
|
| (nrrdStateKeyValuePairsPropagate |
1237 |
|
|
? 0 |
1238 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) { |
1239 |
|
|
biffAddf(NRRD, "%s:", me); |
1240 |
|
|
return 1; |
1241 |
|
|
} |
1242 |
|
|
return 0; |
1243 |
|
|
} |
1244 |
|
|
|
1245 |
|
|
/* for nrrdTile .. |
1246 |
|
|
|
1247 |
|
|
will require that # slices be <= number of images: won't crop for you, |
1248 |
|
|
but will happy pad with black. This will be handled in another |
1249 |
|
|
function. Probably unu tile. |
1250 |
|
|
|
1251 |
|
|
*/ |
1252 |
|
|
|
1253 |
|
|
/* |
1254 |
|
|
******** nrrdTile2D() |
1255 |
|
|
** |
1256 |
|
|
** Splits axis axSplit into two pieces of size sizeFast and sizeSlow. |
1257 |
|
|
** The data from the fast partition is juxtaposed following ax0, the |
1258 |
|
|
** slow after ax1. nrrdAxesMerge is then called to join ax0 and ax1 |
1259 |
|
|
** with their respective newly permuted data. There should be one |
1260 |
|
|
** fewer dimensions in the output nrrd than in the input nrrd. |
1261 |
|
|
*/ |
1262 |
|
|
int |
1263 |
|
|
nrrdTile2D(Nrrd *nout, const Nrrd *nin, unsigned int ax0, unsigned int ax1, |
1264 |
|
|
unsigned int axSplit, size_t sizeFast, size_t sizeSlow) { |
1265 |
|
|
static const char me[]="nrrdTile2D"; |
1266 |
|
|
int E, /* error flag */ |
1267 |
|
|
insAxis[2*NRRD_DIM_MAX], /* array for inserting the two axes resulting |
1268 |
|
|
from the initial split amongst the other |
1269 |
|
|
axes: inserted axes go in odd slots, |
1270 |
|
|
other axes go in even slots */ |
1271 |
|
|
mapIdx, /* index for filling map[] */ |
1272 |
|
|
merge[2], /* two axes to be merged post-permute */ |
1273 |
|
|
mergeIdx; /* index for filling merge[] */ |
1274 |
|
|
unsigned int ii, |
1275 |
|
|
map[NRRD_DIM_MAX]; /* axis map for axis permute */ |
1276 |
|
|
|
1277 |
|
|
if (!(nout && nin)) { |
1278 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
1279 |
|
|
return 1; |
1280 |
|
|
} |
1281 |
|
|
|
1282 |
|
|
/* at least for now, axSplit, ax0, and ax1 need to be distinct */ |
1283 |
|
|
if (!( axSplit != ax0 |
1284 |
|
|
&& axSplit != ax1 |
1285 |
|
|
&& ax0 != ax1 )) { |
1286 |
|
|
biffAddf(NRRD, "%s: axSplit, ax0, ax1 (%d,%d,%d) must be distinct", |
1287 |
|
|
me, axSplit, ax0, ax1); |
1288 |
|
|
return 1; |
1289 |
|
|
} |
1290 |
|
|
if (!( ax0 < nin->dim |
1291 |
|
|
&& ax1 < nin->dim |
1292 |
|
|
&& axSplit < nin->dim )) { |
1293 |
|
|
biffAddf(NRRD, "%s: axSplit, ax0, ax1 (%d,%d,%d) must be in range [0,%d]", |
1294 |
|
|
me, axSplit, ax0, ax1, nin->dim-1); |
1295 |
|
|
return 1; |
1296 |
|
|
} |
1297 |
|
|
|
1298 |
|
|
if (nout != nin) { |
1299 |
|
|
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT |
1300 |
|
|
| (nrrdStateKeyValuePairsPropagate |
1301 |
|
|
? 0 |
1302 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) { |
1303 |
|
|
biffAddf(NRRD, "%s:", me); |
1304 |
|
|
return 1; |
1305 |
|
|
} |
1306 |
|
|
} |
1307 |
|
|
|
1308 |
|
|
/* increment ax0 and ax1 if they're above axSplit, since the |
1309 |
|
|
initial axis split will bump up the corresponding axes */ |
1310 |
|
|
ax0 += (axSplit < ax0); |
1311 |
|
|
ax1 += (axSplit < ax1); |
1312 |
|
|
/* initialize insAxis to all invalid (blank) values */ |
1313 |
|
|
for (ii=0; ii<2*(nout->dim+1); ii++) { |
1314 |
|
|
insAxis[ii] = -1; |
1315 |
|
|
} |
1316 |
|
|
/* run through post-split axes, inserting axSplit and axSplit+1 |
1317 |
|
|
into the slots after ax0 and ax1 respectively, otherwise |
1318 |
|
|
set the identity map */ |
1319 |
|
|
for (ii=0; ii<(nout->dim+1); ii++) { |
1320 |
|
|
if (axSplit == ii) { |
1321 |
|
|
insAxis[2*ax0 + 1] = axSplit; |
1322 |
|
|
} else if (axSplit+1 == ii) { |
1323 |
|
|
insAxis[2*ax1 + 1] = axSplit+1; |
1324 |
|
|
} else { |
1325 |
|
|
insAxis[2*ii + 0] = ii; |
1326 |
|
|
} |
1327 |
|
|
} |
1328 |
|
|
/* settle the values from insAxis[] into map[] by removing the -1's */ |
1329 |
|
|
mergeIdx = mapIdx = 0; |
1330 |
|
|
for (ii=0; ii<2*(nout->dim+1); ii++) { |
1331 |
|
|
if (insAxis[ii] != -1) { |
1332 |
|
|
if (1 == ii % 2) { |
1333 |
|
|
/* its an odd entry in insAxis[], so the previous axis is to be |
1334 |
|
|
merged. Using mapIdx-1 is legit because we disallow |
1335 |
|
|
axSplit == ax{0,1} */ |
1336 |
|
|
merge[mergeIdx++] = mapIdx-1; |
1337 |
|
|
} |
1338 |
|
|
map[mapIdx++] = insAxis[ii]; |
1339 |
|
|
} |
1340 |
|
|
} |
1341 |
|
|
|
1342 |
|
|
E = AIR_FALSE; |
1343 |
|
|
if (!E) E |= nrrdAxesSplit(nout, nout, axSplit, sizeFast, sizeSlow); |
1344 |
|
|
if (!E) E |= nrrdAxesPermute(nout, nout, map); |
1345 |
|
|
if (!E) E |= nrrdAxesMerge(nout, nout, merge[1]); |
1346 |
|
|
if (!E) E |= nrrdAxesMerge(nout, nout, merge[0]); |
1347 |
|
|
if (E) { |
1348 |
|
|
biffAddf(NRRD, "%s: trouble", me); |
1349 |
|
|
return 1; |
1350 |
|
|
} |
1351 |
|
|
/* HEY: set content */ |
1352 |
|
|
if (nrrdBasicInfoCopy(nout, nin, |
1353 |
|
|
NRRD_BASIC_INFO_DATA_BIT |
1354 |
|
|
| NRRD_BASIC_INFO_TYPE_BIT |
1355 |
|
|
| NRRD_BASIC_INFO_BLOCKSIZE_BIT |
1356 |
|
|
| NRRD_BASIC_INFO_DIMENSION_BIT |
1357 |
|
|
| NRRD_BASIC_INFO_CONTENT_BIT |
1358 |
|
|
| NRRD_BASIC_INFO_COMMENTS_BIT |
1359 |
|
|
| (nrrdStateKeyValuePairsPropagate |
1360 |
|
|
? 0 |
1361 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) { |
1362 |
|
|
biffAddf(NRRD, "%s:", me); |
1363 |
|
|
return 1; |
1364 |
|
|
} |
1365 |
|
|
return 0; |
1366 |
|
|
} |
1367 |
|
|
|
1368 |
|
|
/* |
1369 |
|
|
******** nrrdUntile2D() |
1370 |
|
|
** |
1371 |
|
|
** This will split ax0 into nin->axis[ax0].size/sizeFast and sizeFast |
1372 |
|
|
** sizes. ax1 will then be split into nin->axis[ax1].size/sizeSlow |
1373 |
|
|
** and sizeSlow sizes. The axes corresponding to sizeFast and |
1374 |
|
|
** sizeSlow will be permuted and merged such that |
1375 |
|
|
** nout->axis[axMerge].size == sizeFast*sizeSlow. |
1376 |
|
|
** |
1377 |
|
|
** The thing to be careful of is that axMerge identifies an axis |
1378 |
|
|
** in the array set *after* the two axis splits, not before. This |
1379 |
|
|
** is in contrast to the axSplit (and ax0 and ax1) argument of nrrdTile2D |
1380 |
|
|
** which identifies axes in the original nrrd. |
1381 |
|
|
*/ |
1382 |
|
|
int nrrdUntile2D(Nrrd *nout, const Nrrd *nin, |
1383 |
|
|
unsigned int ax0, unsigned int ax1, |
1384 |
|
|
unsigned int axMerge, size_t sizeFast, size_t sizeSlow) { |
1385 |
|
|
static const char me[]="nrrdUntile2D"; |
1386 |
|
|
int E; |
1387 |
|
|
unsigned int ii, mapIdx, map[NRRD_DIM_MAX]; |
1388 |
|
|
char stmp[2][AIR_STRLEN_SMALL]; |
1389 |
|
|
|
1390 |
|
|
if (!(nout && nin)) { |
1391 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
1392 |
|
|
return 1; |
1393 |
|
|
} |
1394 |
|
|
if (ax0 == ax1) { |
1395 |
|
|
biffAddf(NRRD, "%s: ax0 (%d) and ax1 (%d) must be distinct", |
1396 |
|
|
me, ax0, ax1); |
1397 |
|
|
return 1; |
1398 |
|
|
} |
1399 |
|
|
if (!( ax0 < nin->dim && ax1 < nin->dim )) { |
1400 |
|
|
biffAddf(NRRD, "%s: ax0, ax1 (%d,%d) must be in range [0,%d]", |
1401 |
|
|
me, ax0, ax1, nin->dim-1); |
1402 |
|
|
return 1; |
1403 |
|
|
} |
1404 |
|
|
if (!( axMerge <= nin->dim )) { |
1405 |
|
|
biffAddf(NRRD, "%s: axMerge (%d) must be in range [0,%d]", |
1406 |
|
|
me, axMerge, nin->dim); |
1407 |
|
|
return 1; |
1408 |
|
|
} |
1409 |
|
|
if (nin->axis[ax0].size != sizeFast*(nin->axis[ax0].size/sizeFast)) { |
1410 |
|
|
biffAddf(NRRD, "%s: sizeFast (%s) doesn't divide into axis %d size (%s)", |
1411 |
|
|
me, airSprintSize_t(stmp[0], sizeFast), |
1412 |
|
|
ax0, airSprintSize_t(stmp[1], nin->axis[ax0].size)); |
1413 |
|
|
return 1; |
1414 |
|
|
} |
1415 |
|
|
if (nin->axis[ax1].size != sizeSlow*(nin->axis[ax1].size/sizeSlow)) { |
1416 |
|
|
biffAddf(NRRD, "%s: sizeSlow (%s) doesn't divide into axis %d size (%s)", |
1417 |
|
|
me, airSprintSize_t(stmp[0], sizeSlow), |
1418 |
|
|
ax1, airSprintSize_t(stmp[1], nin->axis[ax1].size)); |
1419 |
|
|
return 1; |
1420 |
|
|
} |
1421 |
|
|
|
1422 |
|
|
if (nout != nin) { |
1423 |
|
|
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT |
1424 |
|
|
| (nrrdStateKeyValuePairsPropagate |
1425 |
|
|
? 0 |
1426 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) { |
1427 |
|
|
biffAddf(NRRD, "%s:", me); |
1428 |
|
|
return 1; |
1429 |
|
|
} |
1430 |
|
|
} |
1431 |
|
|
|
1432 |
|
|
/* Split the larger (slower) axis first. */ |
1433 |
|
|
E = AIR_FALSE; |
1434 |
|
|
if (ax0 < ax1) { |
1435 |
|
|
if (!E) E |= nrrdAxesSplit(nout, nout, ax1, |
1436 |
|
|
nin->axis[ax1].size/sizeSlow, sizeSlow); |
1437 |
|
|
if (!E) E |= nrrdAxesSplit(nout, nout, ax0, |
1438 |
|
|
nin->axis[ax0].size/sizeFast, sizeFast); |
1439 |
|
|
/* Increment the larger value as it will get shifted by the lower |
1440 |
|
|
split. */ |
1441 |
|
|
ax1++; |
1442 |
|
|
} else { |
1443 |
|
|
if (!E) E |= nrrdAxesSplit(nout, nout, ax0, |
1444 |
|
|
nin->axis[ax0].size/sizeFast, sizeFast); |
1445 |
|
|
if (!E) E |= nrrdAxesSplit(nout, nout, ax1, |
1446 |
|
|
nin->axis[ax1].size/sizeSlow, sizeSlow); |
1447 |
|
|
ax0++; |
1448 |
|
|
} |
1449 |
|
|
if (E) { |
1450 |
|
|
biffAddf(NRRD, "%s: trouble with initial splitting", me); |
1451 |
|
|
return 1; |
1452 |
|
|
} |
1453 |
|
|
|
1454 |
|
|
/* Determine the axis permutation map */ |
1455 |
|
|
mapIdx = 0; |
1456 |
|
|
for (ii=0; ii<nout->dim; ii++) { |
1457 |
|
|
if (mapIdx == axMerge) { |
1458 |
|
|
/* Insert the slow parts of the axes that have been split */ |
1459 |
|
|
map[mapIdx++] = ax0+1; |
1460 |
|
|
map[mapIdx++] = ax1+1; |
1461 |
|
|
} |
1462 |
|
|
if (ii == ax0+1 || ii == ax1+1) { |
1463 |
|
|
/* These are handled by the logic above */ |
1464 |
|
|
} else { |
1465 |
|
|
/* Otherwise use the identity map */ |
1466 |
|
|
map[mapIdx++] = ii; |
1467 |
|
|
} |
1468 |
|
|
} |
1469 |
|
|
|
1470 |
|
|
/* |
1471 |
|
|
fprintf(stderr, "%s: map =", me); |
1472 |
|
|
for (ii=0; ii<nout->dim; ii++) { |
1473 |
|
|
fprintf(stderr, " %d", map[ii]); |
1474 |
|
|
} |
1475 |
|
|
fprintf(stderr, "; axMerge = %d\n", axMerge); |
1476 |
|
|
*/ |
1477 |
|
|
|
1478 |
|
|
E = AIR_FALSE; |
1479 |
|
|
if (!E) E |= nrrdAxesPermute(nout, nout, map); |
1480 |
|
|
if (!E) E |= nrrdAxesMerge(nout, nout, axMerge); |
1481 |
|
|
if (E) { |
1482 |
|
|
biffAddf(NRRD, "%s: trouble", me); |
1483 |
|
|
return 1; |
1484 |
|
|
} |
1485 |
|
|
|
1486 |
|
|
if (nrrdBasicInfoCopy(nout, nin, |
1487 |
|
|
NRRD_BASIC_INFO_DATA_BIT |
1488 |
|
|
| NRRD_BASIC_INFO_TYPE_BIT |
1489 |
|
|
| NRRD_BASIC_INFO_BLOCKSIZE_BIT |
1490 |
|
|
| NRRD_BASIC_INFO_DIMENSION_BIT |
1491 |
|
|
| NRRD_BASIC_INFO_CONTENT_BIT |
1492 |
|
|
| NRRD_BASIC_INFO_COMMENTS_BIT |
1493 |
|
|
| (nrrdStateKeyValuePairsPropagate |
1494 |
|
|
? 0 |
1495 |
|
|
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) { |
1496 |
|
|
biffAddf(NRRD, "%s:", me); |
1497 |
|
|
return 1; |
1498 |
|
|
} |
1499 |
|
|
return 0; |
1500 |
|
|
} |
1501 |
|
|
|
1502 |
|
|
#if 0 |
1503 |
|
|
int |
1504 |
|
|
nrrdShift(Nrrd *nout, const Nrrd *nin, const ptrdiff_t *offset, |
1505 |
|
|
int boundary, double padValue) { |
1506 |
|
|
static const char me[]="nrrdShift", func[] = "shift"; |
1507 |
|
|
|
1508 |
|
|
if (!(nout && nin && offset)) { |
1509 |
|
|
biffAddf(NRRD, "%s: got NULL pointer", me); |
1510 |
|
|
return 1; |
1511 |
|
|
} |
1512 |
|
|
if (nout == nin) { |
1513 |
|
|
biffAddf(NRRD, "%s: nout==nin disallowed", me); |
1514 |
|
|
return 1; |
1515 |
|
|
} |
1516 |
|
|
|
1517 |
|
|
return 0; |
1518 |
|
|
} |
1519 |
|
|
#endif |
1520 |
|
|
|
1521 |
|
|
/* ---- END non-NrrdIO */ |