1 |
|
|
/* |
2 |
|
|
Teem: Tools to process and visualize scientific data and images . |
3 |
|
|
Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 |
|
|
Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 |
|
|
Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 |
|
|
|
7 |
|
|
This library is free software; you can redistribute it and/or |
8 |
|
|
modify it under the terms of the GNU Lesser General Public License |
9 |
|
|
(LGPL) as published by the Free Software Foundation; either |
10 |
|
|
version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
The terms of redistributing and/or modifying this software also |
12 |
|
|
include exceptions to the LGPL that facilitate static linking. |
13 |
|
|
|
14 |
|
|
This library is distributed in the hope that it will be useful, |
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 |
|
|
Lesser General Public License for more details. |
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU Lesser General Public License |
20 |
|
|
along with this library; if not, write to Free Software Foundation, Inc., |
21 |
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
#include "ten.h" |
25 |
|
|
#include "privateTen.h" |
26 |
|
|
|
27 |
|
|
tenEMBimodalParm* |
28 |
|
|
tenEMBimodalParmNew() { |
29 |
|
|
tenEMBimodalParm *biparm; |
30 |
|
|
|
31 |
|
|
biparm = (tenEMBimodalParm*)calloc(1, sizeof(tenEMBimodalParm)); |
32 |
|
|
if (biparm) { |
33 |
|
|
biparm->minProb = 0.0001; |
34 |
|
|
biparm->minProb2 = 0.0001; |
35 |
|
|
biparm->minDelta = 0.00001; |
36 |
|
|
biparm->minFraction = 0.05; /* 5% */ |
37 |
|
|
biparm->minConfidence = 0.7; |
38 |
|
|
biparm->maxIteration = 200; |
39 |
|
|
biparm->verbose = AIR_FALSE; |
40 |
|
|
|
41 |
|
|
biparm->histo = NULL; |
42 |
|
|
biparm->pp1 = biparm->pp2 = NULL; |
43 |
|
|
biparm->vmin = biparm->vmax = AIR_NAN; |
44 |
|
|
biparm->N = 0; |
45 |
|
|
} |
46 |
|
|
return biparm; |
47 |
|
|
} |
48 |
|
|
|
49 |
|
|
tenEMBimodalParm* |
50 |
|
|
tenEMBimodalParmNix(tenEMBimodalParm *biparm) { |
51 |
|
|
|
52 |
|
|
if (biparm) { |
53 |
|
|
biparm->histo = (double *)airFree(biparm->histo); |
54 |
|
|
biparm->pp1 = (double *)airFree(biparm->pp1); |
55 |
|
|
biparm->pp2 = (double *)airFree(biparm->pp2); |
56 |
|
|
} |
57 |
|
|
airFree(biparm); |
58 |
|
|
return NULL; |
59 |
|
|
} |
60 |
|
|
|
61 |
|
|
int |
62 |
|
|
_tenEMBimodalInit(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { |
63 |
|
|
static const char me[]="_tenEMBimodalInit"; |
64 |
|
|
int i, median; |
65 |
|
|
Nrrd *nhisto; |
66 |
|
|
double medianD, sum; |
67 |
|
|
airArray *mop; |
68 |
|
|
|
69 |
|
|
if (!( biparm->maxIteration > 5 )) { |
70 |
|
|
biffAddf(TEN, "%s: biparm->maxIteration = %d too small", me, |
71 |
|
|
biparm->maxIteration); |
72 |
|
|
return 1; |
73 |
|
|
} |
74 |
|
|
|
75 |
|
|
mop = airMopNew(); |
76 |
|
|
nhisto = nrrdNew(); |
77 |
|
|
airMopAdd(mop, nhisto, (airMopper)nrrdNuke, airMopOnError); |
78 |
|
|
airMopAdd(mop, nhisto, (airMopper)nrrdNix, airMopOnOkay); |
79 |
|
|
if (nrrdConvert(nhisto, _nhisto, nrrdTypeDouble)) { |
80 |
|
|
biffMovef(TEN, NRRD, "%s: trouble converting histogram to double", me); |
81 |
|
|
airMopError(mop); return 1; |
82 |
|
|
} |
83 |
|
|
biparm->N = nhisto->axis[0].size; |
84 |
|
|
biparm->histo = (double*)(nhisto->data); |
85 |
|
|
biparm->vmin = (AIR_EXISTS(nhisto->axis[0].min) |
86 |
|
|
? nhisto->axis[0].min |
87 |
|
|
: -0.5); |
88 |
|
|
biparm->vmax = (AIR_EXISTS(nhisto->axis[0].max) |
89 |
|
|
? nhisto->axis[0].max |
90 |
|
|
: biparm->N - 0.5); |
91 |
|
|
|
92 |
|
|
(nrrdMeasureLine[nrrdMeasureHistoMedian]) |
93 |
|
|
(&medianD, nrrdTypeDouble, |
94 |
|
|
biparm->histo, nrrdTypeDouble, biparm->N, |
95 |
|
|
AIR_NAN, AIR_NAN); |
96 |
|
|
(nrrdMeasureLine[nrrdMeasureSum]) |
97 |
|
|
(&sum, nrrdTypeDouble, |
98 |
|
|
biparm->histo, nrrdTypeDouble, biparm->N, |
99 |
|
|
AIR_NAN, AIR_NAN); |
100 |
|
|
for (i=0; i<biparm->N; i++) { |
101 |
|
|
biparm->histo[i] /= sum; |
102 |
|
|
} |
103 |
|
|
if (!AIR_EXISTS(medianD)) { |
104 |
|
|
biffMovef(TEN, NRRD, |
105 |
|
|
"%s: got empty histogram? (median calculation failed)", me); |
106 |
|
|
airMopError(mop); return 1; |
107 |
|
|
} |
108 |
|
|
median = (int)medianD; |
109 |
|
|
|
110 |
|
|
biparm->pp1 = (double*)calloc(biparm->N, sizeof(double)); |
111 |
|
|
biparm->pp2 = (double*)calloc(biparm->N, sizeof(double)); |
112 |
|
|
if (!( biparm->pp1 && biparm->pp2 )) { |
113 |
|
|
biffAddf(TEN, "%s: couldn't allocate posterior prob. buffers", me); |
114 |
|
|
airMopError(mop); return 1; |
115 |
|
|
} |
116 |
|
|
|
117 |
|
|
/* get mean and stdv of bins below median */ |
118 |
|
|
(nrrdMeasureLine[nrrdMeasureHistoMean]) |
119 |
|
|
(&(biparm->mean1), nrrdTypeDouble, |
120 |
|
|
biparm->histo, nrrdTypeDouble, median, |
121 |
|
|
AIR_NAN, AIR_NAN); |
122 |
|
|
(nrrdMeasureLine[nrrdMeasureHistoSD]) |
123 |
|
|
(&(biparm->stdv1), nrrdTypeDouble, |
124 |
|
|
biparm->histo, nrrdTypeDouble, median, |
125 |
|
|
AIR_NAN, AIR_NAN); |
126 |
|
|
|
127 |
|
|
/* get mean (shift upwards by median) and stdv of bins above median */ |
128 |
|
|
(nrrdMeasureLine[nrrdMeasureHistoMean]) |
129 |
|
|
(&(biparm->mean2), nrrdTypeDouble, |
130 |
|
|
biparm->histo + median, nrrdTypeDouble, biparm->N - median, |
131 |
|
|
AIR_NAN, AIR_NAN); |
132 |
|
|
(nrrdMeasureLine[nrrdMeasureHistoSD]) |
133 |
|
|
(&(biparm->stdv2), nrrdTypeDouble, |
134 |
|
|
biparm->histo + median, nrrdTypeDouble, biparm->N - median, |
135 |
|
|
AIR_NAN, AIR_NAN); |
136 |
|
|
|
137 |
|
|
biparm->mean2 += median; |
138 |
|
|
biparm->fraction1 = 0.5; |
139 |
|
|
|
140 |
|
|
if (biparm->verbose) { |
141 |
|
|
fprintf(stderr, "%s: median = %d\n", me, median); |
142 |
|
|
fprintf(stderr, "%s: m1, s1 = %g, %g; m2, s2 = %g, %g\n", me, |
143 |
|
|
biparm->mean1, biparm->stdv1, |
144 |
|
|
biparm->mean2, biparm->stdv2); |
145 |
|
|
} |
146 |
|
|
|
147 |
|
|
airMopOkay(mop); |
148 |
|
|
return 0; |
149 |
|
|
} |
150 |
|
|
|
151 |
|
|
void |
152 |
|
|
_tenEMBimodalBoost(double *pp1P, double *pp2P, double b) { |
153 |
|
|
double p1, p2, tmp; |
154 |
|
|
int sw=AIR_FALSE; |
155 |
|
|
|
156 |
|
|
if (*pp1P < *pp2P) { |
157 |
|
|
ELL_SWAP2(*pp1P, *pp2P, tmp); |
158 |
|
|
sw = AIR_TRUE; |
159 |
|
|
} |
160 |
|
|
p1 = 1 - pow(1 - *pp1P, b); |
161 |
|
|
p2 = 1 - p1; |
162 |
|
|
if (sw) { |
163 |
|
|
*pp1P = p2; |
164 |
|
|
*pp2P = p1; |
165 |
|
|
} else { |
166 |
|
|
*pp1P = p1; |
167 |
|
|
*pp2P = p2; |
168 |
|
|
} |
169 |
|
|
} |
170 |
|
|
|
171 |
|
|
/* |
172 |
|
|
** what is posterior probability that measured value x comes from |
173 |
|
|
** material 1 and 2, stored in pp1 and pp2 |
174 |
|
|
*/ |
175 |
|
|
void |
176 |
|
|
_tenEMBimodalPP(tenEMBimodalParm *biparm) { |
177 |
|
|
int i; |
178 |
|
|
double g1, g2, pp1, pp2, f1, min; |
179 |
|
|
|
180 |
|
|
min = (1 == biparm->stage |
181 |
|
|
? biparm->minProb |
182 |
|
|
: biparm->minProb2); |
183 |
|
|
f1 = biparm->fraction1; |
184 |
|
|
for (i=0; i<biparm->N; i++) { |
185 |
|
|
g1 = airGaussian(i, biparm->mean1, biparm->stdv1); |
186 |
|
|
g2 = airGaussian(i, biparm->mean2, biparm->stdv2); |
187 |
|
|
if (g1 <= min && g2 <= min) { |
188 |
|
|
pp1 = pp2 = 0; |
189 |
|
|
} else { |
190 |
|
|
pp1 = f1*g1 / (f1*g1 + (1-f1)*g2); |
191 |
|
|
pp2 = 1 - pp1; |
192 |
|
|
} |
193 |
|
|
biparm->pp1[i] = pp1; |
194 |
|
|
biparm->pp2[i] = pp2; |
195 |
|
|
} |
196 |
|
|
|
197 |
|
|
if (biparm->verbose > 1) { |
198 |
|
|
Nrrd *ntmp = nrrdNew(); |
199 |
|
|
nrrdWrap_va(ntmp, biparm->pp1, nrrdTypeDouble, 1, |
200 |
|
|
AIR_CAST(size_t, biparm->N)); |
201 |
|
|
nrrdSave("pp1.nrrd", ntmp, NULL); |
202 |
|
|
nrrdWrap_va(ntmp, biparm->pp2, nrrdTypeDouble, 1, |
203 |
|
|
AIR_CAST(size_t, biparm->N)); |
204 |
|
|
nrrdSave("pp2.nrrd", ntmp, NULL); |
205 |
|
|
nrrdNix(ntmp); |
206 |
|
|
} |
207 |
|
|
|
208 |
|
|
return; |
209 |
|
|
} |
210 |
|
|
|
211 |
|
|
double |
212 |
|
|
_tenEMBimodalNewFraction1(tenEMBimodalParm *biparm) { |
213 |
|
|
int i; |
214 |
|
|
double pp1, pp2, h, sum1, sum2; |
215 |
|
|
|
216 |
|
|
sum1 = sum2 = 0.0; |
217 |
|
|
for (i=0; i<biparm->N; i++) { |
218 |
|
|
pp1 = biparm->pp1[i]; |
219 |
|
|
pp2 = biparm->pp2[i]; |
220 |
|
|
h = biparm->histo[i]; |
221 |
|
|
sum1 += pp1*h; |
222 |
|
|
sum2 += pp2*h; |
223 |
|
|
} |
224 |
|
|
return sum1/(sum1 + sum2); |
225 |
|
|
} |
226 |
|
|
|
227 |
|
|
void |
228 |
|
|
_tenEMBimodalNewMean(double *m1P, double *m2P, |
229 |
|
|
tenEMBimodalParm *biparm) { |
230 |
|
|
int i; |
231 |
|
|
double pp1, pp2, h, sum1, isum1, sum2, isum2; |
232 |
|
|
|
233 |
|
|
sum1 = isum1 = sum2 = isum2 = 0.0; |
234 |
|
|
for (i=0; i<biparm->N; i++) { |
235 |
|
|
pp1 = biparm->pp1[i]; |
236 |
|
|
pp2 = biparm->pp2[i]; |
237 |
|
|
h = biparm->histo[i]; |
238 |
|
|
isum1 += i*pp1*h; |
239 |
|
|
isum2 += i*pp2*h; |
240 |
|
|
sum1 += pp1*h; |
241 |
|
|
sum2 += pp2*h; |
242 |
|
|
} |
243 |
|
|
*m1P = isum1/sum1; |
244 |
|
|
*m2P = isum2/sum2; |
245 |
|
|
} |
246 |
|
|
|
247 |
|
|
void |
248 |
|
|
_tenEMBimodalNewSigma(double *s1P, double *s2P, |
249 |
|
|
double m1, double m2, |
250 |
|
|
tenEMBimodalParm *biparm) { |
251 |
|
|
int i; |
252 |
|
|
double pp1, pp2, h, sum1, isum1, sum2, isum2; |
253 |
|
|
|
254 |
|
|
sum1 = isum1 = sum2 = isum2 = 0.0; |
255 |
|
|
for (i=0; i<biparm->N; i++) { |
256 |
|
|
pp1 = biparm->pp1[i]; |
257 |
|
|
pp2 = biparm->pp2[i]; |
258 |
|
|
h = biparm->histo[i]; |
259 |
|
|
isum1 += (i-m1)*(i-m1)*pp1*h; |
260 |
|
|
isum2 += (i-m2)*(i-m2)*pp2*h; |
261 |
|
|
sum1 += pp1*h; |
262 |
|
|
sum2 += pp2*h; |
263 |
|
|
} |
264 |
|
|
*s1P = sqrt(isum1/sum1); |
265 |
|
|
*s2P = sqrt(isum2/sum2); |
266 |
|
|
} |
267 |
|
|
|
268 |
|
|
void |
269 |
|
|
_tenEMBimodalSaveImage(tenEMBimodalParm *biparm) { |
270 |
|
|
char name[AIR_STRLEN_MED]; |
271 |
|
|
Nrrd *nh, *nm, *nhi, *nmi, *ni; |
272 |
|
|
NrrdRange *range; |
273 |
|
|
const Nrrd *nhmhi[3]; |
274 |
|
|
double *m, max; |
275 |
|
|
int i; |
276 |
|
|
|
277 |
|
|
nh = nrrdNew(); |
278 |
|
|
nm = nrrdNew(); |
279 |
|
|
nhi = nrrdNew(); |
280 |
|
|
nmi = nrrdNew(); |
281 |
|
|
ni = nrrdNew(); |
282 |
|
|
nrrdWrap_va(nh, biparm->histo, nrrdTypeDouble, 1, |
283 |
|
|
AIR_CAST(size_t, biparm->N)); |
284 |
|
|
range = nrrdRangeNewSet(nh, nrrdBlind8BitRangeFalse); |
285 |
|
|
max = range->max*1.1; |
286 |
|
|
nrrdRangeNix(range); |
287 |
|
|
nrrdCopy(nm, nh); |
288 |
|
|
m = (double*)(nm->data); |
289 |
|
|
for (i=0; i<biparm->N; i++) { |
290 |
|
|
m[i] = biparm->fraction1*airGaussian(i, biparm->mean1, biparm->stdv1); |
291 |
|
|
m[i] += (1-biparm->fraction1)*airGaussian(i, biparm->mean2, biparm->stdv2); |
292 |
|
|
} |
293 |
|
|
nrrdHistoDraw(nmi, nm, 400, AIR_FALSE, max); |
294 |
|
|
nrrdHistoDraw(nhi, nh, 400, AIR_FALSE, max); |
295 |
|
|
ELL_3V_SET(nhmhi, nhi, nmi, nhi); |
296 |
|
|
nrrdJoin(ni, nhmhi, 3, 0, AIR_TRUE); |
297 |
|
|
sprintf(name, "%04d-%d.png", biparm->iteration, biparm->stage); |
298 |
|
|
nrrdSave(name, ni, NULL); |
299 |
|
|
nh = nrrdNix(nh); |
300 |
|
|
nm = nrrdNuke(nm); |
301 |
|
|
nhi = nrrdNuke(nhi); |
302 |
|
|
nmi = nrrdNuke(nmi); |
303 |
|
|
ni = nrrdNuke(ni); |
304 |
|
|
return; |
305 |
|
|
} |
306 |
|
|
|
307 |
|
|
|
308 |
|
|
int |
309 |
|
|
_tenEMBimodalIterate(tenEMBimodalParm *biparm) { |
310 |
|
|
static const char me[]="_tenEMBimodalIterate"; |
311 |
|
|
double om1, os1, om2, os2, of1, m1, s1, m2, s2, f1; |
312 |
|
|
|
313 |
|
|
/* copy old values */ |
314 |
|
|
om1 = biparm->mean1; |
315 |
|
|
os1 = biparm->stdv1; |
316 |
|
|
of1 = biparm->fraction1; |
317 |
|
|
om2 = biparm->mean2; |
318 |
|
|
os2 = biparm->stdv2; |
319 |
|
|
|
320 |
|
|
/* find new values, and calculate delta */ |
321 |
|
|
_tenEMBimodalPP(biparm); |
322 |
|
|
f1 = _tenEMBimodalNewFraction1(biparm); |
323 |
|
|
/* if (1 == biparm->stage) { */ |
324 |
|
|
_tenEMBimodalNewMean(&m1, &m2, biparm); |
325 |
|
|
/* } */ |
326 |
|
|
_tenEMBimodalNewSigma(&s1, &s2, m1, m2, biparm); |
327 |
|
|
|
328 |
|
|
biparm->delta = ((fabs(m1 - om1) + fabs(m2 - om2) |
329 |
|
|
+ fabs(s1 - os1) + fabs(s2 - os2))/biparm->N |
330 |
|
|
+ fabs(f1 - of1)); |
331 |
|
|
|
332 |
|
|
/* set new values */ |
333 |
|
|
biparm->mean1 = m1; |
334 |
|
|
biparm->stdv1 = s1; |
335 |
|
|
biparm->fraction1 = f1; |
336 |
|
|
biparm->mean2 = m2; |
337 |
|
|
biparm->stdv2 = s2; |
338 |
|
|
|
339 |
|
|
if (biparm->verbose) { |
340 |
|
|
fprintf(stderr, "%s(%d:%d):\n", me, biparm->stage, biparm->iteration); |
341 |
|
|
fprintf(stderr, " m1, s1 = %g, %g\n", m1, s1); |
342 |
|
|
fprintf(stderr, " m2, s2 = %g, %g\n", m2, s2); |
343 |
|
|
fprintf(stderr, " f1 = %g ; delta = %g\n", f1, biparm->delta); |
344 |
|
|
} |
345 |
|
|
if (biparm->verbose > 1) { |
346 |
|
|
_tenEMBimodalSaveImage(biparm); |
347 |
|
|
} |
348 |
|
|
return 0; |
349 |
|
|
} |
350 |
|
|
|
351 |
|
|
int |
352 |
|
|
_tenEMBimodalConfThresh(tenEMBimodalParm *biparm) { |
353 |
|
|
static const char me[]="_tenEMBimodalConfThresh"; |
354 |
|
|
double m1, s1, m2, s2, f1, f2, A, B, C, D, t1, t2; |
355 |
|
|
|
356 |
|
|
biparm->confidence = ((biparm->mean2 - biparm->mean1) |
357 |
|
|
/ (biparm->stdv1 + biparm->stdv2)); |
358 |
|
|
m1 = biparm->mean1; |
359 |
|
|
s1 = biparm->stdv1; |
360 |
|
|
f1 = biparm->fraction1; |
361 |
|
|
m2 = biparm->mean2; |
362 |
|
|
s2 = biparm->stdv2; |
363 |
|
|
f2 = 1 - f1; |
364 |
|
|
A = s1*s1 - s2*s2; |
365 |
|
|
B = 2*(m1*s2*s2 - m2*s1*s1); |
366 |
|
|
C = s1*s1*m2*m2 - s2*s2*m1*m1 + 4*s1*s1*s2*s2*log(s2*f1/(s1*f2)); |
367 |
|
|
D = B*B - 4*A*C; |
368 |
|
|
if (D < 0) { |
369 |
|
|
biffAddf(TEN, "%s: threshold descriminant went negative (%g)", me, D); |
370 |
|
|
return 1; |
371 |
|
|
} |
372 |
|
|
t1 = (-B + sqrt(D))/(2*A); |
373 |
|
|
if (AIR_IN_OP(m1, t1, m2)) { |
374 |
|
|
biparm->threshold = t1; |
375 |
|
|
} else { |
376 |
|
|
t2 = (-B - sqrt(D))/(2*A); |
377 |
|
|
if (AIR_IN_OP(m1, t2, m2)) { |
378 |
|
|
biparm->threshold = t2; |
379 |
|
|
} else { |
380 |
|
|
biffAddf(TEN, |
381 |
|
|
"%s: neither computed threshold %g,%g inside open interval " |
382 |
|
|
"between means (%g,%g)", me, t1, t2, m1, m2); |
383 |
|
|
return 1; |
384 |
|
|
} |
385 |
|
|
} |
386 |
|
|
|
387 |
|
|
if (biparm->verbose) { |
388 |
|
|
fprintf(stderr, "%s: conf = %g, thresh = %g\n", me, |
389 |
|
|
biparm->confidence, biparm->threshold); |
390 |
|
|
} |
391 |
|
|
return 0; |
392 |
|
|
} |
393 |
|
|
|
394 |
|
|
int |
395 |
|
|
_tenEMBimodalCheck(tenEMBimodalParm *biparm) { |
396 |
|
|
static const char me[]="_tenEMBimodalCheck"; |
397 |
|
|
|
398 |
|
|
if (!( biparm->confidence > biparm->minConfidence )) { |
399 |
|
|
biffAddf(TEN, "%s: confidence %g went below threshold %g", me, |
400 |
|
|
biparm->confidence, biparm->minConfidence); |
401 |
|
|
return 1; |
402 |
|
|
} |
403 |
|
|
if (!( biparm->stdv1 > 0 && biparm->stdv2 > 0 )) { |
404 |
|
|
biffAddf(TEN, "%s: stdv of material 1 (%g) or 2 (%g) went negative", me, |
405 |
|
|
biparm->stdv1, biparm->stdv2); |
406 |
|
|
return 1; |
407 |
|
|
} |
408 |
|
|
if (!( biparm->mean1 > 0 && biparm->mean1 < biparm->N-1 |
409 |
|
|
&& biparm->mean2 > 0 && biparm->mean2 < biparm->N-1 )) { |
410 |
|
|
biffAddf(TEN, "%s: mean of material 1 (%g) or 2 (%g) went outside " |
411 |
|
|
"given histogram range [0 .. %d]", me, |
412 |
|
|
biparm->mean1, biparm->mean2, biparm->N-1); |
413 |
|
|
return 1; |
414 |
|
|
} |
415 |
|
|
if (biparm->fraction1 < biparm->minFraction) { |
416 |
|
|
biffAddf(TEN, "%s: material 1 fraction (%g) fell below threshold %g", me, |
417 |
|
|
biparm->fraction1, biparm->minFraction); |
418 |
|
|
return 1; |
419 |
|
|
} |
420 |
|
|
if (1 - biparm->fraction1 < biparm->minFraction) { |
421 |
|
|
biffAddf(TEN, "%s: material 2 fraction (%g) fell below threshold %g", me, |
422 |
|
|
1 - biparm->fraction1, biparm->minFraction); |
423 |
|
|
return 1; |
424 |
|
|
} |
425 |
|
|
return 0; |
426 |
|
|
} |
427 |
|
|
|
428 |
|
|
int |
429 |
|
|
tenEMBimodal(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { |
430 |
|
|
static const char me[]="tenEMBimodal"; |
431 |
|
|
int done, _iter; |
432 |
|
|
|
433 |
|
|
if (!(biparm && _nhisto)) { |
434 |
|
|
biffAddf(TEN, "%s: got NULL pointer", me); |
435 |
|
|
return 1; |
436 |
|
|
} |
437 |
|
|
if (!( 1 == _nhisto->dim )) { |
438 |
|
|
biffAddf(TEN, "%s: histogram must be 1-D, not %d-D", me, _nhisto->dim); |
439 |
|
|
return 1; |
440 |
|
|
} |
441 |
|
|
|
442 |
|
|
if (_tenEMBimodalInit(biparm, _nhisto)) { |
443 |
|
|
biffAddf(TEN, "%s: trouble initializing parameters", me); |
444 |
|
|
return 1; |
445 |
|
|
} |
446 |
|
|
|
447 |
|
|
done = AIR_FALSE; |
448 |
|
|
biparm->iteration = 0; |
449 |
|
|
for (biparm->stage = 1; |
450 |
|
|
biparm->stage <= (biparm->twoStage ? 2 : 1); |
451 |
|
|
biparm->stage++) { |
452 |
|
|
for (_iter=0; |
453 |
|
|
biparm->iteration <= biparm->maxIteration; |
454 |
|
|
biparm->iteration++, _iter++) { |
455 |
|
|
if (_tenEMBimodalIterate(biparm) /* sets delta */ |
456 |
|
|
|| _tenEMBimodalConfThresh(biparm) |
457 |
|
|
|| _tenEMBimodalCheck(biparm)) { |
458 |
|
|
biffAddf(TEN, "%s: problem with fitting (iter=%d)", me, |
459 |
|
|
biparm->iteration); |
460 |
|
|
return 1; |
461 |
|
|
} |
462 |
|
|
if (biparm->delta < biparm->minDelta |
463 |
|
|
&& (!biparm->twoStage || 1 == biparm->stage || _iter > 10) ) { |
464 |
|
|
done = AIR_TRUE; |
465 |
|
|
break; |
466 |
|
|
} |
467 |
|
|
} |
468 |
|
|
} |
469 |
|
|
if (!done) { |
470 |
|
|
biffAddf(TEN, "%s: didn't converge after %d iterations", me, |
471 |
|
|
biparm->maxIteration); |
472 |
|
|
return 1; |
473 |
|
|
} |
474 |
|
|
|
475 |
|
|
return 0; |
476 |
|
|
} |