| File: | src/ten/bimod.c |
| Location: | line 110, column 26 |
| Description: | Call to 'calloc' has an allocation size of 0 bytes |
| 1 | /* | |||
| 2 | Teem: Tools to process and visualize scientific data and images . | |||
| 3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago | |||
| 4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann | |||
| 5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah | |||
| 6 | ||||
| 7 | This library is free software; you can redistribute it and/or | |||
| 8 | modify it under the terms of the GNU Lesser General Public License | |||
| 9 | (LGPL) as published by the Free Software Foundation; either | |||
| 10 | version 2.1 of the License, or (at your option) any later version. | |||
| 11 | The terms of redistributing and/or modifying this software also | |||
| 12 | include exceptions to the LGPL that facilitate static linking. | |||
| 13 | ||||
| 14 | This library is distributed in the hope that it will be useful, | |||
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
| 17 | Lesser General Public License for more details. | |||
| 18 | ||||
| 19 | You should have received a copy of the GNU Lesser General Public License | |||
| 20 | along with this library; if not, write to Free Software Foundation, Inc., | |||
| 21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
| 22 | */ | |||
| 23 | ||||
| 24 | #include "ten.h" | |||
| 25 | #include "privateTen.h" | |||
| 26 | ||||
| 27 | tenEMBimodalParm* | |||
| 28 | tenEMBimodalParmNew() { | |||
| 29 | tenEMBimodalParm *biparm; | |||
| 30 | ||||
| 31 | biparm = (tenEMBimodalParm*)calloc(1, sizeof(tenEMBimodalParm)); | |||
| 32 | if (biparm) { | |||
| 33 | biparm->minProb = 0.0001; | |||
| 34 | biparm->minProb2 = 0.0001; | |||
| 35 | biparm->minDelta = 0.00001; | |||
| 36 | biparm->minFraction = 0.05; /* 5% */ | |||
| 37 | biparm->minConfidence = 0.7; | |||
| 38 | biparm->maxIteration = 200; | |||
| 39 | biparm->verbose = AIR_FALSE0; | |||
| 40 | ||||
| 41 | biparm->histo = NULL((void*)0); | |||
| 42 | biparm->pp1 = biparm->pp2 = NULL((void*)0); | |||
| 43 | biparm->vmin = biparm->vmax = AIR_NAN(airFloatQNaN.f); | |||
| 44 | biparm->N = 0; | |||
| 45 | } | |||
| 46 | return biparm; | |||
| 47 | } | |||
| 48 | ||||
| 49 | tenEMBimodalParm* | |||
| 50 | tenEMBimodalParmNix(tenEMBimodalParm *biparm) { | |||
| 51 | ||||
| 52 | if (biparm) { | |||
| 53 | biparm->histo = (double *)airFree(biparm->histo); | |||
| 54 | biparm->pp1 = (double *)airFree(biparm->pp1); | |||
| 55 | biparm->pp2 = (double *)airFree(biparm->pp2); | |||
| 56 | } | |||
| 57 | airFree(biparm); | |||
| 58 | return NULL((void*)0); | |||
| 59 | } | |||
| 60 | ||||
| 61 | int | |||
| 62 | _tenEMBimodalInit(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { | |||
| 63 | static const char me[]="_tenEMBimodalInit"; | |||
| 64 | int i, median; | |||
| 65 | Nrrd *nhisto; | |||
| 66 | double medianD, sum; | |||
| 67 | airArray *mop; | |||
| 68 | ||||
| 69 | if (!( biparm->maxIteration > 5 )) { | |||
| 70 | biffAddf(TENtenBiffKey, "%s: biparm->maxIteration = %d too small", me, | |||
| 71 | biparm->maxIteration); | |||
| 72 | return 1; | |||
| 73 | } | |||
| 74 | ||||
| 75 | mop = airMopNew(); | |||
| 76 | nhisto = nrrdNew(); | |||
| 77 | airMopAdd(mop, nhisto, (airMopper)nrrdNuke, airMopOnError); | |||
| 78 | airMopAdd(mop, nhisto, (airMopper)nrrdNix, airMopOnOkay); | |||
| 79 | if (nrrdConvert(nhisto, _nhisto, nrrdTypeDouble)) { | |||
| 80 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: trouble converting histogram to double", me); | |||
| 81 | airMopError(mop); return 1; | |||
| 82 | } | |||
| 83 | biparm->N = nhisto->axis[0].size; | |||
| 84 | biparm->histo = (double*)(nhisto->data); | |||
| 85 | biparm->vmin = (AIR_EXISTS(nhisto->axis[0].min)(((int)(!((nhisto->axis[0].min) - (nhisto->axis[0].min) )))) | |||
| 86 | ? nhisto->axis[0].min | |||
| 87 | : -0.5); | |||
| 88 | biparm->vmax = (AIR_EXISTS(nhisto->axis[0].max)(((int)(!((nhisto->axis[0].max) - (nhisto->axis[0].max) )))) | |||
| 89 | ? nhisto->axis[0].max | |||
| 90 | : biparm->N - 0.5); | |||
| 91 | ||||
| 92 | (nrrdMeasureLine[nrrdMeasureHistoMedian]) | |||
| 93 | (&medianD, nrrdTypeDouble, | |||
| 94 | biparm->histo, nrrdTypeDouble, biparm->N, | |||
| 95 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); | |||
| 96 | (nrrdMeasureLine[nrrdMeasureSum]) | |||
| 97 | (&sum, nrrdTypeDouble, | |||
| 98 | biparm->histo, nrrdTypeDouble, biparm->N, | |||
| 99 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); | |||
| 100 | for (i=0; i<biparm->N; i++) { | |||
| 101 | biparm->histo[i] /= sum; | |||
| 102 | } | |||
| 103 | if (!AIR_EXISTS(medianD)(((int)(!((medianD) - (medianD)))))) { | |||
| 104 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, | |||
| 105 | "%s: got empty histogram? (median calculation failed)", me); | |||
| 106 | airMopError(mop); return 1; | |||
| 107 | } | |||
| 108 | median = (int)medianD; | |||
| 109 | ||||
| 110 | biparm->pp1 = (double*)calloc(biparm->N, sizeof(double)); | |||
| ||||
| 111 | biparm->pp2 = (double*)calloc(biparm->N, sizeof(double)); | |||
| 112 | if (!( biparm->pp1 && biparm->pp2 )) { | |||
| 113 | biffAddf(TENtenBiffKey, "%s: couldn't allocate posterior prob. buffers", me); | |||
| 114 | airMopError(mop); return 1; | |||
| 115 | } | |||
| 116 | ||||
| 117 | /* get mean and stdv of bins below median */ | |||
| 118 | (nrrdMeasureLine[nrrdMeasureHistoMean]) | |||
| 119 | (&(biparm->mean1), nrrdTypeDouble, | |||
| 120 | biparm->histo, nrrdTypeDouble, median, | |||
| 121 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); | |||
| 122 | (nrrdMeasureLine[nrrdMeasureHistoSD]) | |||
| 123 | (&(biparm->stdv1), nrrdTypeDouble, | |||
| 124 | biparm->histo, nrrdTypeDouble, median, | |||
| 125 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); | |||
| 126 | ||||
| 127 | /* get mean (shift upwards by median) and stdv of bins above median */ | |||
| 128 | (nrrdMeasureLine[nrrdMeasureHistoMean]) | |||
| 129 | (&(biparm->mean2), nrrdTypeDouble, | |||
| 130 | biparm->histo + median, nrrdTypeDouble, biparm->N - median, | |||
| 131 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); | |||
| 132 | (nrrdMeasureLine[nrrdMeasureHistoSD]) | |||
| 133 | (&(biparm->stdv2), nrrdTypeDouble, | |||
| 134 | biparm->histo + median, nrrdTypeDouble, biparm->N - median, | |||
| 135 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); | |||
| 136 | ||||
| 137 | biparm->mean2 += median; | |||
| 138 | biparm->fraction1 = 0.5; | |||
| 139 | ||||
| 140 | if (biparm->verbose) { | |||
| 141 | fprintf(stderr__stderrp, "%s: median = %d\n", me, median); | |||
| 142 | fprintf(stderr__stderrp, "%s: m1, s1 = %g, %g; m2, s2 = %g, %g\n", me, | |||
| 143 | biparm->mean1, biparm->stdv1, | |||
| 144 | biparm->mean2, biparm->stdv2); | |||
| 145 | } | |||
| 146 | ||||
| 147 | airMopOkay(mop); | |||
| 148 | return 0; | |||
| 149 | } | |||
| 150 | ||||
| 151 | void | |||
| 152 | _tenEMBimodalBoost(double *pp1P, double *pp2P, double b) { | |||
| 153 | double p1, p2, tmp; | |||
| 154 | int sw=AIR_FALSE0; | |||
| 155 | ||||
| 156 | if (*pp1P < *pp2P) { | |||
| 157 | ELL_SWAP2(*pp1P, *pp2P, tmp)((tmp)=(*pp1P),(*pp1P)=(*pp2P),(*pp2P)=(tmp)); | |||
| 158 | sw = AIR_TRUE1; | |||
| 159 | } | |||
| 160 | p1 = 1 - pow(1 - *pp1P, b); | |||
| 161 | p2 = 1 - p1; | |||
| 162 | if (sw) { | |||
| 163 | *pp1P = p2; | |||
| 164 | *pp2P = p1; | |||
| 165 | } else { | |||
| 166 | *pp1P = p1; | |||
| 167 | *pp2P = p2; | |||
| 168 | } | |||
| 169 | } | |||
| 170 | ||||
| 171 | /* | |||
| 172 | ** what is posterior probability that measured value x comes from | |||
| 173 | ** material 1 and 2, stored in pp1 and pp2 | |||
| 174 | */ | |||
| 175 | void | |||
| 176 | _tenEMBimodalPP(tenEMBimodalParm *biparm) { | |||
| 177 | int i; | |||
| 178 | double g1, g2, pp1, pp2, f1, min; | |||
| 179 | ||||
| 180 | min = (1 == biparm->stage | |||
| 181 | ? biparm->minProb | |||
| 182 | : biparm->minProb2); | |||
| 183 | f1 = biparm->fraction1; | |||
| 184 | for (i=0; i<biparm->N; i++) { | |||
| 185 | g1 = airGaussian(i, biparm->mean1, biparm->stdv1); | |||
| 186 | g2 = airGaussian(i, biparm->mean2, biparm->stdv2); | |||
| 187 | if (g1 <= min && g2 <= min) { | |||
| 188 | pp1 = pp2 = 0; | |||
| 189 | } else { | |||
| 190 | pp1 = f1*g1 / (f1*g1 + (1-f1)*g2); | |||
| 191 | pp2 = 1 - pp1; | |||
| 192 | } | |||
| 193 | biparm->pp1[i] = pp1; | |||
| 194 | biparm->pp2[i] = pp2; | |||
| 195 | } | |||
| 196 | ||||
| 197 | if (biparm->verbose > 1) { | |||
| 198 | Nrrd *ntmp = nrrdNew(); | |||
| 199 | nrrdWrap_va(ntmp, biparm->pp1, nrrdTypeDouble, 1, | |||
| 200 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); | |||
| 201 | nrrdSave("pp1.nrrd", ntmp, NULL((void*)0)); | |||
| 202 | nrrdWrap_va(ntmp, biparm->pp2, nrrdTypeDouble, 1, | |||
| 203 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); | |||
| 204 | nrrdSave("pp2.nrrd", ntmp, NULL((void*)0)); | |||
| 205 | nrrdNix(ntmp); | |||
| 206 | } | |||
| 207 | ||||
| 208 | return; | |||
| 209 | } | |||
| 210 | ||||
| 211 | double | |||
| 212 | _tenEMBimodalNewFraction1(tenEMBimodalParm *biparm) { | |||
| 213 | int i; | |||
| 214 | double pp1, pp2, h, sum1, sum2; | |||
| 215 | ||||
| 216 | sum1 = sum2 = 0.0; | |||
| 217 | for (i=0; i<biparm->N; i++) { | |||
| 218 | pp1 = biparm->pp1[i]; | |||
| 219 | pp2 = biparm->pp2[i]; | |||
| 220 | h = biparm->histo[i]; | |||
| 221 | sum1 += pp1*h; | |||
| 222 | sum2 += pp2*h; | |||
| 223 | } | |||
| 224 | return sum1/(sum1 + sum2); | |||
| 225 | } | |||
| 226 | ||||
| 227 | void | |||
| 228 | _tenEMBimodalNewMean(double *m1P, double *m2P, | |||
| 229 | tenEMBimodalParm *biparm) { | |||
| 230 | int i; | |||
| 231 | double pp1, pp2, h, sum1, isum1, sum2, isum2; | |||
| 232 | ||||
| 233 | sum1 = isum1 = sum2 = isum2 = 0.0; | |||
| 234 | for (i=0; i<biparm->N; i++) { | |||
| 235 | pp1 = biparm->pp1[i]; | |||
| 236 | pp2 = biparm->pp2[i]; | |||
| 237 | h = biparm->histo[i]; | |||
| 238 | isum1 += i*pp1*h; | |||
| 239 | isum2 += i*pp2*h; | |||
| 240 | sum1 += pp1*h; | |||
| 241 | sum2 += pp2*h; | |||
| 242 | } | |||
| 243 | *m1P = isum1/sum1; | |||
| 244 | *m2P = isum2/sum2; | |||
| 245 | } | |||
| 246 | ||||
| 247 | void | |||
| 248 | _tenEMBimodalNewSigma(double *s1P, double *s2P, | |||
| 249 | double m1, double m2, | |||
| 250 | tenEMBimodalParm *biparm) { | |||
| 251 | int i; | |||
| 252 | double pp1, pp2, h, sum1, isum1, sum2, isum2; | |||
| 253 | ||||
| 254 | sum1 = isum1 = sum2 = isum2 = 0.0; | |||
| 255 | for (i=0; i<biparm->N; i++) { | |||
| 256 | pp1 = biparm->pp1[i]; | |||
| 257 | pp2 = biparm->pp2[i]; | |||
| 258 | h = biparm->histo[i]; | |||
| 259 | isum1 += (i-m1)*(i-m1)*pp1*h; | |||
| 260 | isum2 += (i-m2)*(i-m2)*pp2*h; | |||
| 261 | sum1 += pp1*h; | |||
| 262 | sum2 += pp2*h; | |||
| 263 | } | |||
| 264 | *s1P = sqrt(isum1/sum1); | |||
| 265 | *s2P = sqrt(isum2/sum2); | |||
| 266 | } | |||
| 267 | ||||
| 268 | void | |||
| 269 | _tenEMBimodalSaveImage(tenEMBimodalParm *biparm) { | |||
| 270 | char name[AIR_STRLEN_MED(256+1)]; | |||
| 271 | Nrrd *nh, *nm, *nhi, *nmi, *ni; | |||
| 272 | NrrdRange *range; | |||
| 273 | const Nrrd *nhmhi[3]; | |||
| 274 | double *m, max; | |||
| 275 | int i; | |||
| 276 | ||||
| 277 | nh = nrrdNew(); | |||
| 278 | nm = nrrdNew(); | |||
| 279 | nhi = nrrdNew(); | |||
| 280 | nmi = nrrdNew(); | |||
| 281 | ni = nrrdNew(); | |||
| 282 | nrrdWrap_va(nh, biparm->histo, nrrdTypeDouble, 1, | |||
| 283 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); | |||
| 284 | range = nrrdRangeNewSet(nh, nrrdBlind8BitRangeFalse); | |||
| 285 | max = range->max*1.1; | |||
| 286 | nrrdRangeNix(range); | |||
| 287 | nrrdCopy(nm, nh); | |||
| 288 | m = (double*)(nm->data); | |||
| 289 | for (i=0; i<biparm->N; i++) { | |||
| 290 | m[i] = biparm->fraction1*airGaussian(i, biparm->mean1, biparm->stdv1); | |||
| 291 | m[i] += (1-biparm->fraction1)*airGaussian(i, biparm->mean2, biparm->stdv2); | |||
| 292 | } | |||
| 293 | nrrdHistoDraw(nmi, nm, 400, AIR_FALSE0, max); | |||
| 294 | nrrdHistoDraw(nhi, nh, 400, AIR_FALSE0, max); | |||
| 295 | ELL_3V_SET(nhmhi, nhi, nmi, nhi)((nhmhi)[0] = (nhi), (nhmhi)[1] = (nmi), (nhmhi)[2] = (nhi)); | |||
| 296 | nrrdJoin(ni, nhmhi, 3, 0, AIR_TRUE1); | |||
| 297 | sprintf(name, "%04d-%d.png", biparm->iteration, biparm->stage)__builtin___sprintf_chk (name, 0, __builtin_object_size (name , 2 > 1 ? 1 : 0), "%04d-%d.png", biparm->iteration, biparm ->stage); | |||
| 298 | nrrdSave(name, ni, NULL((void*)0)); | |||
| 299 | nh = nrrdNix(nh); | |||
| 300 | nm = nrrdNuke(nm); | |||
| 301 | nhi = nrrdNuke(nhi); | |||
| 302 | nmi = nrrdNuke(nmi); | |||
| 303 | ni = nrrdNuke(ni); | |||
| 304 | return; | |||
| 305 | } | |||
| 306 | ||||
| 307 | ||||
| 308 | int | |||
| 309 | _tenEMBimodalIterate(tenEMBimodalParm *biparm) { | |||
| 310 | static const char me[]="_tenEMBimodalIterate"; | |||
| 311 | double om1, os1, om2, os2, of1, m1, s1, m2, s2, f1; | |||
| 312 | ||||
| 313 | /* copy old values */ | |||
| 314 | om1 = biparm->mean1; | |||
| 315 | os1 = biparm->stdv1; | |||
| 316 | of1 = biparm->fraction1; | |||
| 317 | om2 = biparm->mean2; | |||
| 318 | os2 = biparm->stdv2; | |||
| 319 | ||||
| 320 | /* find new values, and calculate delta */ | |||
| 321 | _tenEMBimodalPP(biparm); | |||
| 322 | f1 = _tenEMBimodalNewFraction1(biparm); | |||
| 323 | /* if (1 == biparm->stage) { */ | |||
| 324 | _tenEMBimodalNewMean(&m1, &m2, biparm); | |||
| 325 | /* } */ | |||
| 326 | _tenEMBimodalNewSigma(&s1, &s2, m1, m2, biparm); | |||
| 327 | ||||
| 328 | biparm->delta = ((fabs(m1 - om1) + fabs(m2 - om2) | |||
| 329 | + fabs(s1 - os1) + fabs(s2 - os2))/biparm->N | |||
| 330 | + fabs(f1 - of1)); | |||
| 331 | ||||
| 332 | /* set new values */ | |||
| 333 | biparm->mean1 = m1; | |||
| 334 | biparm->stdv1 = s1; | |||
| 335 | biparm->fraction1 = f1; | |||
| 336 | biparm->mean2 = m2; | |||
| 337 | biparm->stdv2 = s2; | |||
| 338 | ||||
| 339 | if (biparm->verbose) { | |||
| 340 | fprintf(stderr__stderrp, "%s(%d:%d):\n", me, biparm->stage, biparm->iteration); | |||
| 341 | fprintf(stderr__stderrp, " m1, s1 = %g, %g\n", m1, s1); | |||
| 342 | fprintf(stderr__stderrp, " m2, s2 = %g, %g\n", m2, s2); | |||
| 343 | fprintf(stderr__stderrp, " f1 = %g ; delta = %g\n", f1, biparm->delta); | |||
| 344 | } | |||
| 345 | if (biparm->verbose > 1) { | |||
| 346 | _tenEMBimodalSaveImage(biparm); | |||
| 347 | } | |||
| 348 | return 0; | |||
| 349 | } | |||
| 350 | ||||
| 351 | int | |||
| 352 | _tenEMBimodalConfThresh(tenEMBimodalParm *biparm) { | |||
| 353 | static const char me[]="_tenEMBimodalConfThresh"; | |||
| 354 | double m1, s1, m2, s2, f1, f2, A, B, C, D, t1, t2; | |||
| 355 | ||||
| 356 | biparm->confidence = ((biparm->mean2 - biparm->mean1) | |||
| 357 | / (biparm->stdv1 + biparm->stdv2)); | |||
| 358 | m1 = biparm->mean1; | |||
| 359 | s1 = biparm->stdv1; | |||
| 360 | f1 = biparm->fraction1; | |||
| 361 | m2 = biparm->mean2; | |||
| 362 | s2 = biparm->stdv2; | |||
| 363 | f2 = 1 - f1; | |||
| 364 | A = s1*s1 - s2*s2; | |||
| 365 | B = 2*(m1*s2*s2 - m2*s1*s1); | |||
| 366 | C = s1*s1*m2*m2 - s2*s2*m1*m1 + 4*s1*s1*s2*s2*log(s2*f1/(s1*f2)); | |||
| 367 | D = B*B - 4*A*C; | |||
| 368 | if (D < 0) { | |||
| 369 | biffAddf(TENtenBiffKey, "%s: threshold descriminant went negative (%g)", me, D); | |||
| 370 | return 1; | |||
| 371 | } | |||
| 372 | t1 = (-B + sqrt(D))/(2*A); | |||
| 373 | if (AIR_IN_OP(m1, t1, m2)((m1) < (t1) && (t1) < (m2))) { | |||
| 374 | biparm->threshold = t1; | |||
| 375 | } else { | |||
| 376 | t2 = (-B - sqrt(D))/(2*A); | |||
| 377 | if (AIR_IN_OP(m1, t2, m2)((m1) < (t2) && (t2) < (m2))) { | |||
| 378 | biparm->threshold = t2; | |||
| 379 | } else { | |||
| 380 | biffAddf(TENtenBiffKey, | |||
| 381 | "%s: neither computed threshold %g,%g inside open interval " | |||
| 382 | "between means (%g,%g)", me, t1, t2, m1, m2); | |||
| 383 | return 1; | |||
| 384 | } | |||
| 385 | } | |||
| 386 | ||||
| 387 | if (biparm->verbose) { | |||
| 388 | fprintf(stderr__stderrp, "%s: conf = %g, thresh = %g\n", me, | |||
| 389 | biparm->confidence, biparm->threshold); | |||
| 390 | } | |||
| 391 | return 0; | |||
| 392 | } | |||
| 393 | ||||
| 394 | int | |||
| 395 | _tenEMBimodalCheck(tenEMBimodalParm *biparm) { | |||
| 396 | static const char me[]="_tenEMBimodalCheck"; | |||
| 397 | ||||
| 398 | if (!( biparm->confidence > biparm->minConfidence )) { | |||
| 399 | biffAddf(TENtenBiffKey, "%s: confidence %g went below threshold %g", me, | |||
| 400 | biparm->confidence, biparm->minConfidence); | |||
| 401 | return 1; | |||
| 402 | } | |||
| 403 | if (!( biparm->stdv1 > 0 && biparm->stdv2 > 0 )) { | |||
| 404 | biffAddf(TENtenBiffKey, "%s: stdv of material 1 (%g) or 2 (%g) went negative", me, | |||
| 405 | biparm->stdv1, biparm->stdv2); | |||
| 406 | return 1; | |||
| 407 | } | |||
| 408 | if (!( biparm->mean1 > 0 && biparm->mean1 < biparm->N-1 | |||
| 409 | && biparm->mean2 > 0 && biparm->mean2 < biparm->N-1 )) { | |||
| 410 | biffAddf(TENtenBiffKey, "%s: mean of material 1 (%g) or 2 (%g) went outside " | |||
| 411 | "given histogram range [0 .. %d]", me, | |||
| 412 | biparm->mean1, biparm->mean2, biparm->N-1); | |||
| 413 | return 1; | |||
| 414 | } | |||
| 415 | if (biparm->fraction1 < biparm->minFraction) { | |||
| 416 | biffAddf(TENtenBiffKey, "%s: material 1 fraction (%g) fell below threshold %g", me, | |||
| 417 | biparm->fraction1, biparm->minFraction); | |||
| 418 | return 1; | |||
| 419 | } | |||
| 420 | if (1 - biparm->fraction1 < biparm->minFraction) { | |||
| 421 | biffAddf(TENtenBiffKey, "%s: material 2 fraction (%g) fell below threshold %g", me, | |||
| 422 | 1 - biparm->fraction1, biparm->minFraction); | |||
| 423 | return 1; | |||
| 424 | } | |||
| 425 | return 0; | |||
| 426 | } | |||
| 427 | ||||
| 428 | int | |||
| 429 | tenEMBimodal(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { | |||
| 430 | static const char me[]="tenEMBimodal"; | |||
| 431 | int done, _iter; | |||
| 432 | ||||
| 433 | if (!(biparm && _nhisto)) { | |||
| ||||
| 434 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); | |||
| 435 | return 1; | |||
| 436 | } | |||
| 437 | if (!( 1 == _nhisto->dim )) { | |||
| 438 | biffAddf(TENtenBiffKey, "%s: histogram must be 1-D, not %d-D", me, _nhisto->dim); | |||
| 439 | return 1; | |||
| 440 | } | |||
| 441 | ||||
| 442 | if (_tenEMBimodalInit(biparm, _nhisto)) { | |||
| 443 | biffAddf(TENtenBiffKey, "%s: trouble initializing parameters", me); | |||
| 444 | return 1; | |||
| 445 | } | |||
| 446 | ||||
| 447 | done = AIR_FALSE0; | |||
| 448 | biparm->iteration = 0; | |||
| 449 | for (biparm->stage = 1; | |||
| 450 | biparm->stage <= (biparm->twoStage ? 2 : 1); | |||
| 451 | biparm->stage++) { | |||
| 452 | for (_iter=0; | |||
| 453 | biparm->iteration <= biparm->maxIteration; | |||
| 454 | biparm->iteration++, _iter++) { | |||
| 455 | if (_tenEMBimodalIterate(biparm) /* sets delta */ | |||
| 456 | || _tenEMBimodalConfThresh(biparm) | |||
| 457 | || _tenEMBimodalCheck(biparm)) { | |||
| 458 | biffAddf(TENtenBiffKey, "%s: problem with fitting (iter=%d)", me, | |||
| 459 | biparm->iteration); | |||
| 460 | return 1; | |||
| 461 | } | |||
| 462 | if (biparm->delta < biparm->minDelta | |||
| 463 | && (!biparm->twoStage || 1 == biparm->stage || _iter > 10) ) { | |||
| 464 | done = AIR_TRUE1; | |||
| 465 | break; | |||
| 466 | } | |||
| 467 | } | |||
| 468 | } | |||
| 469 | if (!done) { | |||
| 470 | biffAddf(TENtenBiffKey, "%s: didn't converge after %d iterations", me, | |||
| 471 | biparm->maxIteration); | |||
| 472 | return 1; | |||
| 473 | } | |||
| 474 | ||||
| 475 | return 0; | |||
| 476 | } |