File: | src/ten/bimod.c |
Location: | line 301, column 3 |
Description: | Value stored to 'nhi' is never read |
1 | /* |
2 | Teem: Tools to process and visualize scientific data and images . |
3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 | |
7 | This library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public License |
9 | (LGPL) as published by the Free Software Foundation; either |
10 | version 2.1 of the License, or (at your option) any later version. |
11 | The terms of redistributing and/or modifying this software also |
12 | include exceptions to the LGPL that facilitate static linking. |
13 | |
14 | This library is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 | Lesser General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU Lesser General Public License |
20 | along with this library; if not, write to Free Software Foundation, Inc., |
21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 | */ |
23 | |
24 | #include "ten.h" |
25 | #include "privateTen.h" |
26 | |
27 | tenEMBimodalParm* |
28 | tenEMBimodalParmNew() { |
29 | tenEMBimodalParm *biparm; |
30 | |
31 | biparm = (tenEMBimodalParm*)calloc(1, sizeof(tenEMBimodalParm)); |
32 | if (biparm) { |
33 | biparm->minProb = 0.0001; |
34 | biparm->minProb2 = 0.0001; |
35 | biparm->minDelta = 0.00001; |
36 | biparm->minFraction = 0.05; /* 5% */ |
37 | biparm->minConfidence = 0.7; |
38 | biparm->maxIteration = 200; |
39 | biparm->verbose = AIR_FALSE0; |
40 | |
41 | biparm->histo = NULL((void*)0); |
42 | biparm->pp1 = biparm->pp2 = NULL((void*)0); |
43 | biparm->vmin = biparm->vmax = AIR_NAN(airFloatQNaN.f); |
44 | biparm->N = 0; |
45 | } |
46 | return biparm; |
47 | } |
48 | |
49 | tenEMBimodalParm* |
50 | tenEMBimodalParmNix(tenEMBimodalParm *biparm) { |
51 | |
52 | if (biparm) { |
53 | biparm->histo = (double *)airFree(biparm->histo); |
54 | biparm->pp1 = (double *)airFree(biparm->pp1); |
55 | biparm->pp2 = (double *)airFree(biparm->pp2); |
56 | } |
57 | airFree(biparm); |
58 | return NULL((void*)0); |
59 | } |
60 | |
61 | int |
62 | _tenEMBimodalInit(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { |
63 | static const char me[]="_tenEMBimodalInit"; |
64 | int i, median; |
65 | Nrrd *nhisto; |
66 | double medianD, sum; |
67 | airArray *mop; |
68 | |
69 | if (!( biparm->maxIteration > 5 )) { |
70 | biffAddf(TENtenBiffKey, "%s: biparm->maxIteration = %d too small", me, |
71 | biparm->maxIteration); |
72 | return 1; |
73 | } |
74 | |
75 | mop = airMopNew(); |
76 | nhisto = nrrdNew(); |
77 | airMopAdd(mop, nhisto, (airMopper)nrrdNuke, airMopOnError); |
78 | airMopAdd(mop, nhisto, (airMopper)nrrdNix, airMopOnOkay); |
79 | if (nrrdConvert(nhisto, _nhisto, nrrdTypeDouble)) { |
80 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: trouble converting histogram to double", me); |
81 | airMopError(mop); return 1; |
82 | } |
83 | biparm->N = nhisto->axis[0].size; |
84 | biparm->histo = (double*)(nhisto->data); |
85 | biparm->vmin = (AIR_EXISTS(nhisto->axis[0].min)(((int)(!((nhisto->axis[0].min) - (nhisto->axis[0].min) )))) |
86 | ? nhisto->axis[0].min |
87 | : -0.5); |
88 | biparm->vmax = (AIR_EXISTS(nhisto->axis[0].max)(((int)(!((nhisto->axis[0].max) - (nhisto->axis[0].max) )))) |
89 | ? nhisto->axis[0].max |
90 | : biparm->N - 0.5); |
91 | |
92 | (nrrdMeasureLine[nrrdMeasureHistoMedian]) |
93 | (&medianD, nrrdTypeDouble, |
94 | biparm->histo, nrrdTypeDouble, biparm->N, |
95 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
96 | (nrrdMeasureLine[nrrdMeasureSum]) |
97 | (&sum, nrrdTypeDouble, |
98 | biparm->histo, nrrdTypeDouble, biparm->N, |
99 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
100 | for (i=0; i<biparm->N; i++) { |
101 | biparm->histo[i] /= sum; |
102 | } |
103 | if (!AIR_EXISTS(medianD)(((int)(!((medianD) - (medianD)))))) { |
104 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, |
105 | "%s: got empty histogram? (median calculation failed)", me); |
106 | airMopError(mop); return 1; |
107 | } |
108 | median = (int)medianD; |
109 | |
110 | biparm->pp1 = (double*)calloc(biparm->N, sizeof(double)); |
111 | biparm->pp2 = (double*)calloc(biparm->N, sizeof(double)); |
112 | if (!( biparm->pp1 && biparm->pp2 )) { |
113 | biffAddf(TENtenBiffKey, "%s: couldn't allocate posterior prob. buffers", me); |
114 | airMopError(mop); return 1; |
115 | } |
116 | |
117 | /* get mean and stdv of bins below median */ |
118 | (nrrdMeasureLine[nrrdMeasureHistoMean]) |
119 | (&(biparm->mean1), nrrdTypeDouble, |
120 | biparm->histo, nrrdTypeDouble, median, |
121 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
122 | (nrrdMeasureLine[nrrdMeasureHistoSD]) |
123 | (&(biparm->stdv1), nrrdTypeDouble, |
124 | biparm->histo, nrrdTypeDouble, median, |
125 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
126 | |
127 | /* get mean (shift upwards by median) and stdv of bins above median */ |
128 | (nrrdMeasureLine[nrrdMeasureHistoMean]) |
129 | (&(biparm->mean2), nrrdTypeDouble, |
130 | biparm->histo + median, nrrdTypeDouble, biparm->N - median, |
131 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
132 | (nrrdMeasureLine[nrrdMeasureHistoSD]) |
133 | (&(biparm->stdv2), nrrdTypeDouble, |
134 | biparm->histo + median, nrrdTypeDouble, biparm->N - median, |
135 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
136 | |
137 | biparm->mean2 += median; |
138 | biparm->fraction1 = 0.5; |
139 | |
140 | if (biparm->verbose) { |
141 | fprintf(stderr__stderrp, "%s: median = %d\n", me, median); |
142 | fprintf(stderr__stderrp, "%s: m1, s1 = %g, %g; m2, s2 = %g, %g\n", me, |
143 | biparm->mean1, biparm->stdv1, |
144 | biparm->mean2, biparm->stdv2); |
145 | } |
146 | |
147 | airMopOkay(mop); |
148 | return 0; |
149 | } |
150 | |
151 | void |
152 | _tenEMBimodalBoost(double *pp1P, double *pp2P, double b) { |
153 | double p1, p2, tmp; |
154 | int sw=AIR_FALSE0; |
155 | |
156 | if (*pp1P < *pp2P) { |
157 | ELL_SWAP2(*pp1P, *pp2P, tmp)((tmp)=(*pp1P),(*pp1P)=(*pp2P),(*pp2P)=(tmp)); |
158 | sw = AIR_TRUE1; |
159 | } |
160 | p1 = 1 - pow(1 - *pp1P, b); |
161 | p2 = 1 - p1; |
162 | if (sw) { |
163 | *pp1P = p2; |
164 | *pp2P = p1; |
165 | } else { |
166 | *pp1P = p1; |
167 | *pp2P = p2; |
168 | } |
169 | } |
170 | |
171 | /* |
172 | ** what is posterior probability that measured value x comes from |
173 | ** material 1 and 2, stored in pp1 and pp2 |
174 | */ |
175 | void |
176 | _tenEMBimodalPP(tenEMBimodalParm *biparm) { |
177 | int i; |
178 | double g1, g2, pp1, pp2, f1, min; |
179 | |
180 | min = (1 == biparm->stage |
181 | ? biparm->minProb |
182 | : biparm->minProb2); |
183 | f1 = biparm->fraction1; |
184 | for (i=0; i<biparm->N; i++) { |
185 | g1 = airGaussian(i, biparm->mean1, biparm->stdv1); |
186 | g2 = airGaussian(i, biparm->mean2, biparm->stdv2); |
187 | if (g1 <= min && g2 <= min) { |
188 | pp1 = pp2 = 0; |
189 | } else { |
190 | pp1 = f1*g1 / (f1*g1 + (1-f1)*g2); |
191 | pp2 = 1 - pp1; |
192 | } |
193 | biparm->pp1[i] = pp1; |
194 | biparm->pp2[i] = pp2; |
195 | } |
196 | |
197 | if (biparm->verbose > 1) { |
198 | Nrrd *ntmp = nrrdNew(); |
199 | nrrdWrap_va(ntmp, biparm->pp1, nrrdTypeDouble, 1, |
200 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); |
201 | nrrdSave("pp1.nrrd", ntmp, NULL((void*)0)); |
202 | nrrdWrap_va(ntmp, biparm->pp2, nrrdTypeDouble, 1, |
203 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); |
204 | nrrdSave("pp2.nrrd", ntmp, NULL((void*)0)); |
205 | nrrdNix(ntmp); |
206 | } |
207 | |
208 | return; |
209 | } |
210 | |
211 | double |
212 | _tenEMBimodalNewFraction1(tenEMBimodalParm *biparm) { |
213 | int i; |
214 | double pp1, pp2, h, sum1, sum2; |
215 | |
216 | sum1 = sum2 = 0.0; |
217 | for (i=0; i<biparm->N; i++) { |
218 | pp1 = biparm->pp1[i]; |
219 | pp2 = biparm->pp2[i]; |
220 | h = biparm->histo[i]; |
221 | sum1 += pp1*h; |
222 | sum2 += pp2*h; |
223 | } |
224 | return sum1/(sum1 + sum2); |
225 | } |
226 | |
227 | void |
228 | _tenEMBimodalNewMean(double *m1P, double *m2P, |
229 | tenEMBimodalParm *biparm) { |
230 | int i; |
231 | double pp1, pp2, h, sum1, isum1, sum2, isum2; |
232 | |
233 | sum1 = isum1 = sum2 = isum2 = 0.0; |
234 | for (i=0; i<biparm->N; i++) { |
235 | pp1 = biparm->pp1[i]; |
236 | pp2 = biparm->pp2[i]; |
237 | h = biparm->histo[i]; |
238 | isum1 += i*pp1*h; |
239 | isum2 += i*pp2*h; |
240 | sum1 += pp1*h; |
241 | sum2 += pp2*h; |
242 | } |
243 | *m1P = isum1/sum1; |
244 | *m2P = isum2/sum2; |
245 | } |
246 | |
247 | void |
248 | _tenEMBimodalNewSigma(double *s1P, double *s2P, |
249 | double m1, double m2, |
250 | tenEMBimodalParm *biparm) { |
251 | int i; |
252 | double pp1, pp2, h, sum1, isum1, sum2, isum2; |
253 | |
254 | sum1 = isum1 = sum2 = isum2 = 0.0; |
255 | for (i=0; i<biparm->N; i++) { |
256 | pp1 = biparm->pp1[i]; |
257 | pp2 = biparm->pp2[i]; |
258 | h = biparm->histo[i]; |
259 | isum1 += (i-m1)*(i-m1)*pp1*h; |
260 | isum2 += (i-m2)*(i-m2)*pp2*h; |
261 | sum1 += pp1*h; |
262 | sum2 += pp2*h; |
263 | } |
264 | *s1P = sqrt(isum1/sum1); |
265 | *s2P = sqrt(isum2/sum2); |
266 | } |
267 | |
268 | void |
269 | _tenEMBimodalSaveImage(tenEMBimodalParm *biparm) { |
270 | char name[AIR_STRLEN_MED(256+1)]; |
271 | Nrrd *nh, *nm, *nhi, *nmi, *ni; |
272 | NrrdRange *range; |
273 | const Nrrd *nhmhi[3]; |
274 | double *m, max; |
275 | int i; |
276 | |
277 | nh = nrrdNew(); |
278 | nm = nrrdNew(); |
279 | nhi = nrrdNew(); |
280 | nmi = nrrdNew(); |
281 | ni = nrrdNew(); |
282 | nrrdWrap_va(nh, biparm->histo, nrrdTypeDouble, 1, |
283 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); |
284 | range = nrrdRangeNewSet(nh, nrrdBlind8BitRangeFalse); |
285 | max = range->max*1.1; |
286 | nrrdRangeNix(range); |
287 | nrrdCopy(nm, nh); |
288 | m = (double*)(nm->data); |
289 | for (i=0; i<biparm->N; i++) { |
290 | m[i] = biparm->fraction1*airGaussian(i, biparm->mean1, biparm->stdv1); |
291 | m[i] += (1-biparm->fraction1)*airGaussian(i, biparm->mean2, biparm->stdv2); |
292 | } |
293 | nrrdHistoDraw(nmi, nm, 400, AIR_FALSE0, max); |
294 | nrrdHistoDraw(nhi, nh, 400, AIR_FALSE0, max); |
295 | ELL_3V_SET(nhmhi, nhi, nmi, nhi)((nhmhi)[0] = (nhi), (nhmhi)[1] = (nmi), (nhmhi)[2] = (nhi)); |
296 | nrrdJoin(ni, nhmhi, 3, 0, AIR_TRUE1); |
297 | sprintf(name, "%04d-%d.png", biparm->iteration, biparm->stage)__builtin___sprintf_chk (name, 0, __builtin_object_size (name , 2 > 1 ? 1 : 0), "%04d-%d.png", biparm->iteration, biparm ->stage); |
298 | nrrdSave(name, ni, NULL((void*)0)); |
299 | nh = nrrdNix(nh); |
300 | nm = nrrdNuke(nm); |
301 | nhi = nrrdNuke(nhi); |
Value stored to 'nhi' is never read | |
302 | nmi = nrrdNuke(nmi); |
303 | ni = nrrdNuke(ni); |
304 | return; |
305 | } |
306 | |
307 | |
308 | int |
309 | _tenEMBimodalIterate(tenEMBimodalParm *biparm) { |
310 | static const char me[]="_tenEMBimodalIterate"; |
311 | double om1, os1, om2, os2, of1, m1, s1, m2, s2, f1; |
312 | |
313 | /* copy old values */ |
314 | om1 = biparm->mean1; |
315 | os1 = biparm->stdv1; |
316 | of1 = biparm->fraction1; |
317 | om2 = biparm->mean2; |
318 | os2 = biparm->stdv2; |
319 | |
320 | /* find new values, and calculate delta */ |
321 | _tenEMBimodalPP(biparm); |
322 | f1 = _tenEMBimodalNewFraction1(biparm); |
323 | /* if (1 == biparm->stage) { */ |
324 | _tenEMBimodalNewMean(&m1, &m2, biparm); |
325 | /* } */ |
326 | _tenEMBimodalNewSigma(&s1, &s2, m1, m2, biparm); |
327 | |
328 | biparm->delta = ((fabs(m1 - om1) + fabs(m2 - om2) |
329 | + fabs(s1 - os1) + fabs(s2 - os2))/biparm->N |
330 | + fabs(f1 - of1)); |
331 | |
332 | /* set new values */ |
333 | biparm->mean1 = m1; |
334 | biparm->stdv1 = s1; |
335 | biparm->fraction1 = f1; |
336 | biparm->mean2 = m2; |
337 | biparm->stdv2 = s2; |
338 | |
339 | if (biparm->verbose) { |
340 | fprintf(stderr__stderrp, "%s(%d:%d):\n", me, biparm->stage, biparm->iteration); |
341 | fprintf(stderr__stderrp, " m1, s1 = %g, %g\n", m1, s1); |
342 | fprintf(stderr__stderrp, " m2, s2 = %g, %g\n", m2, s2); |
343 | fprintf(stderr__stderrp, " f1 = %g ; delta = %g\n", f1, biparm->delta); |
344 | } |
345 | if (biparm->verbose > 1) { |
346 | _tenEMBimodalSaveImage(biparm); |
347 | } |
348 | return 0; |
349 | } |
350 | |
351 | int |
352 | _tenEMBimodalConfThresh(tenEMBimodalParm *biparm) { |
353 | static const char me[]="_tenEMBimodalConfThresh"; |
354 | double m1, s1, m2, s2, f1, f2, A, B, C, D, t1, t2; |
355 | |
356 | biparm->confidence = ((biparm->mean2 - biparm->mean1) |
357 | / (biparm->stdv1 + biparm->stdv2)); |
358 | m1 = biparm->mean1; |
359 | s1 = biparm->stdv1; |
360 | f1 = biparm->fraction1; |
361 | m2 = biparm->mean2; |
362 | s2 = biparm->stdv2; |
363 | f2 = 1 - f1; |
364 | A = s1*s1 - s2*s2; |
365 | B = 2*(m1*s2*s2 - m2*s1*s1); |
366 | C = s1*s1*m2*m2 - s2*s2*m1*m1 + 4*s1*s1*s2*s2*log(s2*f1/(s1*f2)); |
367 | D = B*B - 4*A*C; |
368 | if (D < 0) { |
369 | biffAddf(TENtenBiffKey, "%s: threshold descriminant went negative (%g)", me, D); |
370 | return 1; |
371 | } |
372 | t1 = (-B + sqrt(D))/(2*A); |
373 | if (AIR_IN_OP(m1, t1, m2)((m1) < (t1) && (t1) < (m2))) { |
374 | biparm->threshold = t1; |
375 | } else { |
376 | t2 = (-B - sqrt(D))/(2*A); |
377 | if (AIR_IN_OP(m1, t2, m2)((m1) < (t2) && (t2) < (m2))) { |
378 | biparm->threshold = t2; |
379 | } else { |
380 | biffAddf(TENtenBiffKey, |
381 | "%s: neither computed threshold %g,%g inside open interval " |
382 | "between means (%g,%g)", me, t1, t2, m1, m2); |
383 | return 1; |
384 | } |
385 | } |
386 | |
387 | if (biparm->verbose) { |
388 | fprintf(stderr__stderrp, "%s: conf = %g, thresh = %g\n", me, |
389 | biparm->confidence, biparm->threshold); |
390 | } |
391 | return 0; |
392 | } |
393 | |
394 | int |
395 | _tenEMBimodalCheck(tenEMBimodalParm *biparm) { |
396 | static const char me[]="_tenEMBimodalCheck"; |
397 | |
398 | if (!( biparm->confidence > biparm->minConfidence )) { |
399 | biffAddf(TENtenBiffKey, "%s: confidence %g went below threshold %g", me, |
400 | biparm->confidence, biparm->minConfidence); |
401 | return 1; |
402 | } |
403 | if (!( biparm->stdv1 > 0 && biparm->stdv2 > 0 )) { |
404 | biffAddf(TENtenBiffKey, "%s: stdv of material 1 (%g) or 2 (%g) went negative", me, |
405 | biparm->stdv1, biparm->stdv2); |
406 | return 1; |
407 | } |
408 | if (!( biparm->mean1 > 0 && biparm->mean1 < biparm->N-1 |
409 | && biparm->mean2 > 0 && biparm->mean2 < biparm->N-1 )) { |
410 | biffAddf(TENtenBiffKey, "%s: mean of material 1 (%g) or 2 (%g) went outside " |
411 | "given histogram range [0 .. %d]", me, |
412 | biparm->mean1, biparm->mean2, biparm->N-1); |
413 | return 1; |
414 | } |
415 | if (biparm->fraction1 < biparm->minFraction) { |
416 | biffAddf(TENtenBiffKey, "%s: material 1 fraction (%g) fell below threshold %g", me, |
417 | biparm->fraction1, biparm->minFraction); |
418 | return 1; |
419 | } |
420 | if (1 - biparm->fraction1 < biparm->minFraction) { |
421 | biffAddf(TENtenBiffKey, "%s: material 2 fraction (%g) fell below threshold %g", me, |
422 | 1 - biparm->fraction1, biparm->minFraction); |
423 | return 1; |
424 | } |
425 | return 0; |
426 | } |
427 | |
428 | int |
429 | tenEMBimodal(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { |
430 | static const char me[]="tenEMBimodal"; |
431 | int done, _iter; |
432 | |
433 | if (!(biparm && _nhisto)) { |
434 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
435 | return 1; |
436 | } |
437 | if (!( 1 == _nhisto->dim )) { |
438 | biffAddf(TENtenBiffKey, "%s: histogram must be 1-D, not %d-D", me, _nhisto->dim); |
439 | return 1; |
440 | } |
441 | |
442 | if (_tenEMBimodalInit(biparm, _nhisto)) { |
443 | biffAddf(TENtenBiffKey, "%s: trouble initializing parameters", me); |
444 | return 1; |
445 | } |
446 | |
447 | done = AIR_FALSE0; |
448 | biparm->iteration = 0; |
449 | for (biparm->stage = 1; |
450 | biparm->stage <= (biparm->twoStage ? 2 : 1); |
451 | biparm->stage++) { |
452 | for (_iter=0; |
453 | biparm->iteration <= biparm->maxIteration; |
454 | biparm->iteration++, _iter++) { |
455 | if (_tenEMBimodalIterate(biparm) /* sets delta */ |
456 | || _tenEMBimodalConfThresh(biparm) |
457 | || _tenEMBimodalCheck(biparm)) { |
458 | biffAddf(TENtenBiffKey, "%s: problem with fitting (iter=%d)", me, |
459 | biparm->iteration); |
460 | return 1; |
461 | } |
462 | if (biparm->delta < biparm->minDelta |
463 | && (!biparm->twoStage || 1 == biparm->stage || _iter > 10) ) { |
464 | done = AIR_TRUE1; |
465 | break; |
466 | } |
467 | } |
468 | } |
469 | if (!done) { |
470 | biffAddf(TENtenBiffKey, "%s: didn't converge after %d iterations", me, |
471 | biparm->maxIteration); |
472 | return 1; |
473 | } |
474 | |
475 | return 0; |
476 | } |