| File: | src/ten/bimod.c |
| Location: | line 299, column 3 |
| Description: | Value stored to 'nh' is never read |
| 1 | /* |
| 2 | Teem: Tools to process and visualize scientific data and images . |
| 3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
| 4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
| 5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
| 6 | |
| 7 | This library is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU Lesser General Public License |
| 9 | (LGPL) as published by the Free Software Foundation; either |
| 10 | version 2.1 of the License, or (at your option) any later version. |
| 11 | The terms of redistributing and/or modifying this software also |
| 12 | include exceptions to the LGPL that facilitate static linking. |
| 13 | |
| 14 | This library is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | Lesser General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU Lesser General Public License |
| 20 | along with this library; if not, write to Free Software Foundation, Inc., |
| 21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 22 | */ |
| 23 | |
| 24 | #include "ten.h" |
| 25 | #include "privateTen.h" |
| 26 | |
| 27 | tenEMBimodalParm* |
| 28 | tenEMBimodalParmNew() { |
| 29 | tenEMBimodalParm *biparm; |
| 30 | |
| 31 | biparm = (tenEMBimodalParm*)calloc(1, sizeof(tenEMBimodalParm)); |
| 32 | if (biparm) { |
| 33 | biparm->minProb = 0.0001; |
| 34 | biparm->minProb2 = 0.0001; |
| 35 | biparm->minDelta = 0.00001; |
| 36 | biparm->minFraction = 0.05; /* 5% */ |
| 37 | biparm->minConfidence = 0.7; |
| 38 | biparm->maxIteration = 200; |
| 39 | biparm->verbose = AIR_FALSE0; |
| 40 | |
| 41 | biparm->histo = NULL((void*)0); |
| 42 | biparm->pp1 = biparm->pp2 = NULL((void*)0); |
| 43 | biparm->vmin = biparm->vmax = AIR_NAN(airFloatQNaN.f); |
| 44 | biparm->N = 0; |
| 45 | } |
| 46 | return biparm; |
| 47 | } |
| 48 | |
| 49 | tenEMBimodalParm* |
| 50 | tenEMBimodalParmNix(tenEMBimodalParm *biparm) { |
| 51 | |
| 52 | if (biparm) { |
| 53 | biparm->histo = (double *)airFree(biparm->histo); |
| 54 | biparm->pp1 = (double *)airFree(biparm->pp1); |
| 55 | biparm->pp2 = (double *)airFree(biparm->pp2); |
| 56 | } |
| 57 | airFree(biparm); |
| 58 | return NULL((void*)0); |
| 59 | } |
| 60 | |
| 61 | int |
| 62 | _tenEMBimodalInit(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { |
| 63 | static const char me[]="_tenEMBimodalInit"; |
| 64 | int i, median; |
| 65 | Nrrd *nhisto; |
| 66 | double medianD, sum; |
| 67 | airArray *mop; |
| 68 | |
| 69 | if (!( biparm->maxIteration > 5 )) { |
| 70 | biffAddf(TENtenBiffKey, "%s: biparm->maxIteration = %d too small", me, |
| 71 | biparm->maxIteration); |
| 72 | return 1; |
| 73 | } |
| 74 | |
| 75 | mop = airMopNew(); |
| 76 | nhisto = nrrdNew(); |
| 77 | airMopAdd(mop, nhisto, (airMopper)nrrdNuke, airMopOnError); |
| 78 | airMopAdd(mop, nhisto, (airMopper)nrrdNix, airMopOnOkay); |
| 79 | if (nrrdConvert(nhisto, _nhisto, nrrdTypeDouble)) { |
| 80 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: trouble converting histogram to double", me); |
| 81 | airMopError(mop); return 1; |
| 82 | } |
| 83 | biparm->N = nhisto->axis[0].size; |
| 84 | biparm->histo = (double*)(nhisto->data); |
| 85 | biparm->vmin = (AIR_EXISTS(nhisto->axis[0].min)(((int)(!((nhisto->axis[0].min) - (nhisto->axis[0].min) )))) |
| 86 | ? nhisto->axis[0].min |
| 87 | : -0.5); |
| 88 | biparm->vmax = (AIR_EXISTS(nhisto->axis[0].max)(((int)(!((nhisto->axis[0].max) - (nhisto->axis[0].max) )))) |
| 89 | ? nhisto->axis[0].max |
| 90 | : biparm->N - 0.5); |
| 91 | |
| 92 | (nrrdMeasureLine[nrrdMeasureHistoMedian]) |
| 93 | (&medianD, nrrdTypeDouble, |
| 94 | biparm->histo, nrrdTypeDouble, biparm->N, |
| 95 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
| 96 | (nrrdMeasureLine[nrrdMeasureSum]) |
| 97 | (&sum, nrrdTypeDouble, |
| 98 | biparm->histo, nrrdTypeDouble, biparm->N, |
| 99 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
| 100 | for (i=0; i<biparm->N; i++) { |
| 101 | biparm->histo[i] /= sum; |
| 102 | } |
| 103 | if (!AIR_EXISTS(medianD)(((int)(!((medianD) - (medianD)))))) { |
| 104 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, |
| 105 | "%s: got empty histogram? (median calculation failed)", me); |
| 106 | airMopError(mop); return 1; |
| 107 | } |
| 108 | median = (int)medianD; |
| 109 | |
| 110 | biparm->pp1 = (double*)calloc(biparm->N, sizeof(double)); |
| 111 | biparm->pp2 = (double*)calloc(biparm->N, sizeof(double)); |
| 112 | if (!( biparm->pp1 && biparm->pp2 )) { |
| 113 | biffAddf(TENtenBiffKey, "%s: couldn't allocate posterior prob. buffers", me); |
| 114 | airMopError(mop); return 1; |
| 115 | } |
| 116 | |
| 117 | /* get mean and stdv of bins below median */ |
| 118 | (nrrdMeasureLine[nrrdMeasureHistoMean]) |
| 119 | (&(biparm->mean1), nrrdTypeDouble, |
| 120 | biparm->histo, nrrdTypeDouble, median, |
| 121 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
| 122 | (nrrdMeasureLine[nrrdMeasureHistoSD]) |
| 123 | (&(biparm->stdv1), nrrdTypeDouble, |
| 124 | biparm->histo, nrrdTypeDouble, median, |
| 125 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
| 126 | |
| 127 | /* get mean (shift upwards by median) and stdv of bins above median */ |
| 128 | (nrrdMeasureLine[nrrdMeasureHistoMean]) |
| 129 | (&(biparm->mean2), nrrdTypeDouble, |
| 130 | biparm->histo + median, nrrdTypeDouble, biparm->N - median, |
| 131 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
| 132 | (nrrdMeasureLine[nrrdMeasureHistoSD]) |
| 133 | (&(biparm->stdv2), nrrdTypeDouble, |
| 134 | biparm->histo + median, nrrdTypeDouble, biparm->N - median, |
| 135 | AIR_NAN(airFloatQNaN.f), AIR_NAN(airFloatQNaN.f)); |
| 136 | |
| 137 | biparm->mean2 += median; |
| 138 | biparm->fraction1 = 0.5; |
| 139 | |
| 140 | if (biparm->verbose) { |
| 141 | fprintf(stderr__stderrp, "%s: median = %d\n", me, median); |
| 142 | fprintf(stderr__stderrp, "%s: m1, s1 = %g, %g; m2, s2 = %g, %g\n", me, |
| 143 | biparm->mean1, biparm->stdv1, |
| 144 | biparm->mean2, biparm->stdv2); |
| 145 | } |
| 146 | |
| 147 | airMopOkay(mop); |
| 148 | return 0; |
| 149 | } |
| 150 | |
| 151 | void |
| 152 | _tenEMBimodalBoost(double *pp1P, double *pp2P, double b) { |
| 153 | double p1, p2, tmp; |
| 154 | int sw=AIR_FALSE0; |
| 155 | |
| 156 | if (*pp1P < *pp2P) { |
| 157 | ELL_SWAP2(*pp1P, *pp2P, tmp)((tmp)=(*pp1P),(*pp1P)=(*pp2P),(*pp2P)=(tmp)); |
| 158 | sw = AIR_TRUE1; |
| 159 | } |
| 160 | p1 = 1 - pow(1 - *pp1P, b); |
| 161 | p2 = 1 - p1; |
| 162 | if (sw) { |
| 163 | *pp1P = p2; |
| 164 | *pp2P = p1; |
| 165 | } else { |
| 166 | *pp1P = p1; |
| 167 | *pp2P = p2; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | ** what is posterior probability that measured value x comes from |
| 173 | ** material 1 and 2, stored in pp1 and pp2 |
| 174 | */ |
| 175 | void |
| 176 | _tenEMBimodalPP(tenEMBimodalParm *biparm) { |
| 177 | int i; |
| 178 | double g1, g2, pp1, pp2, f1, min; |
| 179 | |
| 180 | min = (1 == biparm->stage |
| 181 | ? biparm->minProb |
| 182 | : biparm->minProb2); |
| 183 | f1 = biparm->fraction1; |
| 184 | for (i=0; i<biparm->N; i++) { |
| 185 | g1 = airGaussian(i, biparm->mean1, biparm->stdv1); |
| 186 | g2 = airGaussian(i, biparm->mean2, biparm->stdv2); |
| 187 | if (g1 <= min && g2 <= min) { |
| 188 | pp1 = pp2 = 0; |
| 189 | } else { |
| 190 | pp1 = f1*g1 / (f1*g1 + (1-f1)*g2); |
| 191 | pp2 = 1 - pp1; |
| 192 | } |
| 193 | biparm->pp1[i] = pp1; |
| 194 | biparm->pp2[i] = pp2; |
| 195 | } |
| 196 | |
| 197 | if (biparm->verbose > 1) { |
| 198 | Nrrd *ntmp = nrrdNew(); |
| 199 | nrrdWrap_va(ntmp, biparm->pp1, nrrdTypeDouble, 1, |
| 200 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); |
| 201 | nrrdSave("pp1.nrrd", ntmp, NULL((void*)0)); |
| 202 | nrrdWrap_va(ntmp, biparm->pp2, nrrdTypeDouble, 1, |
| 203 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); |
| 204 | nrrdSave("pp2.nrrd", ntmp, NULL((void*)0)); |
| 205 | nrrdNix(ntmp); |
| 206 | } |
| 207 | |
| 208 | return; |
| 209 | } |
| 210 | |
| 211 | double |
| 212 | _tenEMBimodalNewFraction1(tenEMBimodalParm *biparm) { |
| 213 | int i; |
| 214 | double pp1, pp2, h, sum1, sum2; |
| 215 | |
| 216 | sum1 = sum2 = 0.0; |
| 217 | for (i=0; i<biparm->N; i++) { |
| 218 | pp1 = biparm->pp1[i]; |
| 219 | pp2 = biparm->pp2[i]; |
| 220 | h = biparm->histo[i]; |
| 221 | sum1 += pp1*h; |
| 222 | sum2 += pp2*h; |
| 223 | } |
| 224 | return sum1/(sum1 + sum2); |
| 225 | } |
| 226 | |
| 227 | void |
| 228 | _tenEMBimodalNewMean(double *m1P, double *m2P, |
| 229 | tenEMBimodalParm *biparm) { |
| 230 | int i; |
| 231 | double pp1, pp2, h, sum1, isum1, sum2, isum2; |
| 232 | |
| 233 | sum1 = isum1 = sum2 = isum2 = 0.0; |
| 234 | for (i=0; i<biparm->N; i++) { |
| 235 | pp1 = biparm->pp1[i]; |
| 236 | pp2 = biparm->pp2[i]; |
| 237 | h = biparm->histo[i]; |
| 238 | isum1 += i*pp1*h; |
| 239 | isum2 += i*pp2*h; |
| 240 | sum1 += pp1*h; |
| 241 | sum2 += pp2*h; |
| 242 | } |
| 243 | *m1P = isum1/sum1; |
| 244 | *m2P = isum2/sum2; |
| 245 | } |
| 246 | |
| 247 | void |
| 248 | _tenEMBimodalNewSigma(double *s1P, double *s2P, |
| 249 | double m1, double m2, |
| 250 | tenEMBimodalParm *biparm) { |
| 251 | int i; |
| 252 | double pp1, pp2, h, sum1, isum1, sum2, isum2; |
| 253 | |
| 254 | sum1 = isum1 = sum2 = isum2 = 0.0; |
| 255 | for (i=0; i<biparm->N; i++) { |
| 256 | pp1 = biparm->pp1[i]; |
| 257 | pp2 = biparm->pp2[i]; |
| 258 | h = biparm->histo[i]; |
| 259 | isum1 += (i-m1)*(i-m1)*pp1*h; |
| 260 | isum2 += (i-m2)*(i-m2)*pp2*h; |
| 261 | sum1 += pp1*h; |
| 262 | sum2 += pp2*h; |
| 263 | } |
| 264 | *s1P = sqrt(isum1/sum1); |
| 265 | *s2P = sqrt(isum2/sum2); |
| 266 | } |
| 267 | |
| 268 | void |
| 269 | _tenEMBimodalSaveImage(tenEMBimodalParm *biparm) { |
| 270 | char name[AIR_STRLEN_MED(256+1)]; |
| 271 | Nrrd *nh, *nm, *nhi, *nmi, *ni; |
| 272 | NrrdRange *range; |
| 273 | const Nrrd *nhmhi[3]; |
| 274 | double *m, max; |
| 275 | int i; |
| 276 | |
| 277 | nh = nrrdNew(); |
| 278 | nm = nrrdNew(); |
| 279 | nhi = nrrdNew(); |
| 280 | nmi = nrrdNew(); |
| 281 | ni = nrrdNew(); |
| 282 | nrrdWrap_va(nh, biparm->histo, nrrdTypeDouble, 1, |
| 283 | AIR_CAST(size_t, biparm->N)((size_t)(biparm->N))); |
| 284 | range = nrrdRangeNewSet(nh, nrrdBlind8BitRangeFalse); |
| 285 | max = range->max*1.1; |
| 286 | nrrdRangeNix(range); |
| 287 | nrrdCopy(nm, nh); |
| 288 | m = (double*)(nm->data); |
| 289 | for (i=0; i<biparm->N; i++) { |
| 290 | m[i] = biparm->fraction1*airGaussian(i, biparm->mean1, biparm->stdv1); |
| 291 | m[i] += (1-biparm->fraction1)*airGaussian(i, biparm->mean2, biparm->stdv2); |
| 292 | } |
| 293 | nrrdHistoDraw(nmi, nm, 400, AIR_FALSE0, max); |
| 294 | nrrdHistoDraw(nhi, nh, 400, AIR_FALSE0, max); |
| 295 | ELL_3V_SET(nhmhi, nhi, nmi, nhi)((nhmhi)[0] = (nhi), (nhmhi)[1] = (nmi), (nhmhi)[2] = (nhi)); |
| 296 | nrrdJoin(ni, nhmhi, 3, 0, AIR_TRUE1); |
| 297 | sprintf(name, "%04d-%d.png", biparm->iteration, biparm->stage)__builtin___sprintf_chk (name, 0, __builtin_object_size (name , 2 > 1 ? 1 : 0), "%04d-%d.png", biparm->iteration, biparm ->stage); |
| 298 | nrrdSave(name, ni, NULL((void*)0)); |
| 299 | nh = nrrdNix(nh); |
Value stored to 'nh' is never read | |
| 300 | nm = nrrdNuke(nm); |
| 301 | nhi = nrrdNuke(nhi); |
| 302 | nmi = nrrdNuke(nmi); |
| 303 | ni = nrrdNuke(ni); |
| 304 | return; |
| 305 | } |
| 306 | |
| 307 | |
| 308 | int |
| 309 | _tenEMBimodalIterate(tenEMBimodalParm *biparm) { |
| 310 | static const char me[]="_tenEMBimodalIterate"; |
| 311 | double om1, os1, om2, os2, of1, m1, s1, m2, s2, f1; |
| 312 | |
| 313 | /* copy old values */ |
| 314 | om1 = biparm->mean1; |
| 315 | os1 = biparm->stdv1; |
| 316 | of1 = biparm->fraction1; |
| 317 | om2 = biparm->mean2; |
| 318 | os2 = biparm->stdv2; |
| 319 | |
| 320 | /* find new values, and calculate delta */ |
| 321 | _tenEMBimodalPP(biparm); |
| 322 | f1 = _tenEMBimodalNewFraction1(biparm); |
| 323 | /* if (1 == biparm->stage) { */ |
| 324 | _tenEMBimodalNewMean(&m1, &m2, biparm); |
| 325 | /* } */ |
| 326 | _tenEMBimodalNewSigma(&s1, &s2, m1, m2, biparm); |
| 327 | |
| 328 | biparm->delta = ((fabs(m1 - om1) + fabs(m2 - om2) |
| 329 | + fabs(s1 - os1) + fabs(s2 - os2))/biparm->N |
| 330 | + fabs(f1 - of1)); |
| 331 | |
| 332 | /* set new values */ |
| 333 | biparm->mean1 = m1; |
| 334 | biparm->stdv1 = s1; |
| 335 | biparm->fraction1 = f1; |
| 336 | biparm->mean2 = m2; |
| 337 | biparm->stdv2 = s2; |
| 338 | |
| 339 | if (biparm->verbose) { |
| 340 | fprintf(stderr__stderrp, "%s(%d:%d):\n", me, biparm->stage, biparm->iteration); |
| 341 | fprintf(stderr__stderrp, " m1, s1 = %g, %g\n", m1, s1); |
| 342 | fprintf(stderr__stderrp, " m2, s2 = %g, %g\n", m2, s2); |
| 343 | fprintf(stderr__stderrp, " f1 = %g ; delta = %g\n", f1, biparm->delta); |
| 344 | } |
| 345 | if (biparm->verbose > 1) { |
| 346 | _tenEMBimodalSaveImage(biparm); |
| 347 | } |
| 348 | return 0; |
| 349 | } |
| 350 | |
| 351 | int |
| 352 | _tenEMBimodalConfThresh(tenEMBimodalParm *biparm) { |
| 353 | static const char me[]="_tenEMBimodalConfThresh"; |
| 354 | double m1, s1, m2, s2, f1, f2, A, B, C, D, t1, t2; |
| 355 | |
| 356 | biparm->confidence = ((biparm->mean2 - biparm->mean1) |
| 357 | / (biparm->stdv1 + biparm->stdv2)); |
| 358 | m1 = biparm->mean1; |
| 359 | s1 = biparm->stdv1; |
| 360 | f1 = biparm->fraction1; |
| 361 | m2 = biparm->mean2; |
| 362 | s2 = biparm->stdv2; |
| 363 | f2 = 1 - f1; |
| 364 | A = s1*s1 - s2*s2; |
| 365 | B = 2*(m1*s2*s2 - m2*s1*s1); |
| 366 | C = s1*s1*m2*m2 - s2*s2*m1*m1 + 4*s1*s1*s2*s2*log(s2*f1/(s1*f2)); |
| 367 | D = B*B - 4*A*C; |
| 368 | if (D < 0) { |
| 369 | biffAddf(TENtenBiffKey, "%s: threshold descriminant went negative (%g)", me, D); |
| 370 | return 1; |
| 371 | } |
| 372 | t1 = (-B + sqrt(D))/(2*A); |
| 373 | if (AIR_IN_OP(m1, t1, m2)((m1) < (t1) && (t1) < (m2))) { |
| 374 | biparm->threshold = t1; |
| 375 | } else { |
| 376 | t2 = (-B - sqrt(D))/(2*A); |
| 377 | if (AIR_IN_OP(m1, t2, m2)((m1) < (t2) && (t2) < (m2))) { |
| 378 | biparm->threshold = t2; |
| 379 | } else { |
| 380 | biffAddf(TENtenBiffKey, |
| 381 | "%s: neither computed threshold %g,%g inside open interval " |
| 382 | "between means (%g,%g)", me, t1, t2, m1, m2); |
| 383 | return 1; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | if (biparm->verbose) { |
| 388 | fprintf(stderr__stderrp, "%s: conf = %g, thresh = %g\n", me, |
| 389 | biparm->confidence, biparm->threshold); |
| 390 | } |
| 391 | return 0; |
| 392 | } |
| 393 | |
| 394 | int |
| 395 | _tenEMBimodalCheck(tenEMBimodalParm *biparm) { |
| 396 | static const char me[]="_tenEMBimodalCheck"; |
| 397 | |
| 398 | if (!( biparm->confidence > biparm->minConfidence )) { |
| 399 | biffAddf(TENtenBiffKey, "%s: confidence %g went below threshold %g", me, |
| 400 | biparm->confidence, biparm->minConfidence); |
| 401 | return 1; |
| 402 | } |
| 403 | if (!( biparm->stdv1 > 0 && biparm->stdv2 > 0 )) { |
| 404 | biffAddf(TENtenBiffKey, "%s: stdv of material 1 (%g) or 2 (%g) went negative", me, |
| 405 | biparm->stdv1, biparm->stdv2); |
| 406 | return 1; |
| 407 | } |
| 408 | if (!( biparm->mean1 > 0 && biparm->mean1 < biparm->N-1 |
| 409 | && biparm->mean2 > 0 && biparm->mean2 < biparm->N-1 )) { |
| 410 | biffAddf(TENtenBiffKey, "%s: mean of material 1 (%g) or 2 (%g) went outside " |
| 411 | "given histogram range [0 .. %d]", me, |
| 412 | biparm->mean1, biparm->mean2, biparm->N-1); |
| 413 | return 1; |
| 414 | } |
| 415 | if (biparm->fraction1 < biparm->minFraction) { |
| 416 | biffAddf(TENtenBiffKey, "%s: material 1 fraction (%g) fell below threshold %g", me, |
| 417 | biparm->fraction1, biparm->minFraction); |
| 418 | return 1; |
| 419 | } |
| 420 | if (1 - biparm->fraction1 < biparm->minFraction) { |
| 421 | biffAddf(TENtenBiffKey, "%s: material 2 fraction (%g) fell below threshold %g", me, |
| 422 | 1 - biparm->fraction1, biparm->minFraction); |
| 423 | return 1; |
| 424 | } |
| 425 | return 0; |
| 426 | } |
| 427 | |
| 428 | int |
| 429 | tenEMBimodal(tenEMBimodalParm *biparm, const Nrrd *_nhisto) { |
| 430 | static const char me[]="tenEMBimodal"; |
| 431 | int done, _iter; |
| 432 | |
| 433 | if (!(biparm && _nhisto)) { |
| 434 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
| 435 | return 1; |
| 436 | } |
| 437 | if (!( 1 == _nhisto->dim )) { |
| 438 | biffAddf(TENtenBiffKey, "%s: histogram must be 1-D, not %d-D", me, _nhisto->dim); |
| 439 | return 1; |
| 440 | } |
| 441 | |
| 442 | if (_tenEMBimodalInit(biparm, _nhisto)) { |
| 443 | biffAddf(TENtenBiffKey, "%s: trouble initializing parameters", me); |
| 444 | return 1; |
| 445 | } |
| 446 | |
| 447 | done = AIR_FALSE0; |
| 448 | biparm->iteration = 0; |
| 449 | for (biparm->stage = 1; |
| 450 | biparm->stage <= (biparm->twoStage ? 2 : 1); |
| 451 | biparm->stage++) { |
| 452 | for (_iter=0; |
| 453 | biparm->iteration <= biparm->maxIteration; |
| 454 | biparm->iteration++, _iter++) { |
| 455 | if (_tenEMBimodalIterate(biparm) /* sets delta */ |
| 456 | || _tenEMBimodalConfThresh(biparm) |
| 457 | || _tenEMBimodalCheck(biparm)) { |
| 458 | biffAddf(TENtenBiffKey, "%s: problem with fitting (iter=%d)", me, |
| 459 | biparm->iteration); |
| 460 | return 1; |
| 461 | } |
| 462 | if (biparm->delta < biparm->minDelta |
| 463 | && (!biparm->twoStage || 1 == biparm->stage || _iter > 10) ) { |
| 464 | done = AIR_TRUE1; |
| 465 | break; |
| 466 | } |
| 467 | } |
| 468 | } |
| 469 | if (!done) { |
| 470 | biffAddf(TENtenBiffKey, "%s: didn't converge after %d iterations", me, |
| 471 | biparm->maxIteration); |
| 472 | return 1; |
| 473 | } |
| 474 | |
| 475 | return 0; |
| 476 | } |