File: | src/limn/polymod.c |
Location: | line 1791, column 21 |
Description: | Result of 'calloc' is converted to a pointer of type 'unsigned char', which is incompatible with sizeof operand type 'char' |
1 | /* |
2 | Teem: Tools to process and visualize scientific data and images . |
3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 | Copyright (C) 2012, 2011, 2010, 2009, 2008 Thomas Schultz |
7 | |
8 | This library is free software; you can redistribute it and/or |
9 | modify it under the terms of the GNU Lesser General Public License |
10 | (LGPL) as published by the Free Software Foundation; either |
11 | version 2.1 of the License, or (at your option) any later version. |
12 | The terms of redistributing and/or modifying this software also |
13 | include exceptions to the LGPL that facilitate static linking. |
14 | |
15 | This library is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
18 | Lesser General Public License for more details. |
19 | |
20 | You should have received a copy of the GNU Lesser General Public License |
21 | along with this library; if not, write to Free Software Foundation, Inc., |
22 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
23 | */ |
24 | |
25 | |
26 | #include "limn.h" |
27 | |
28 | /* |
29 | ** determines intersection of elements of srcA and srcB. |
30 | ** assumes: |
31 | ** - there are no repeats in either list |
32 | ** - dstC is allocated for at least as long as the longer of srcA and srcB |
33 | */ |
34 | static unsigned int |
35 | flipListIntx(unsigned int *dstC, |
36 | const unsigned int *_srcA, const unsigned int *_srcB) { |
37 | const unsigned int *srcA, *srcB; |
38 | unsigned int numA, numB, numC, idxA, idxB; |
39 | |
40 | numA = _srcA[0]; |
41 | srcA = _srcA + 1; |
42 | numB = _srcB[0]; |
43 | srcB = _srcB + 1; |
44 | numC = 0; |
45 | for (idxA=0; idxA<numA; idxA++) { |
46 | for (idxB=0; idxB<numB; idxB++) { |
47 | if (srcA[idxA] == srcB[idxB]) { |
48 | dstC[numC++] = srcA[idxA]; |
49 | } |
50 | } |
51 | } |
52 | return numC; |
53 | } |
54 | |
55 | /* |
56 | ** given triangle identified by triIdx, |
57 | ** set neighGot[] and neighInfo[][] |
58 | ** neighbors are index 0,1,2; |
59 | ** neighbor ii is on edge between vert ii and (ii+1)%3 |
60 | ** neighGot[ii] is non-zero iff there was such a neighbor |
61 | ** neighInfo[ii][0]: index of the (triangle) neighbor |
62 | ** neighInfo[ii][1], neighInfo[ii][2]: the two vertices shared with neighbor, |
63 | ** in the order that the *neighbor* should be traversing them |
64 | */ |
65 | static void |
66 | flipNeighborsGet(Nrrd *nTriWithVert, Nrrd *nVertWithTri, |
67 | unsigned int neighGot[3], unsigned int neighInfo[3][3], |
68 | unsigned int *intxBuff, unsigned int triIdx) { |
69 | /* static const char me[]="flipNeighborsGet"; */ |
70 | unsigned int intxNum, vertA, vertB, neighIdx, maxTriPerVert, |
71 | *vertWithTri, *triWithVert; |
72 | int ii; |
73 | |
74 | vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data)((unsigned int*)(nVertWithTri->data)); |
75 | triWithVert = AIR_CAST(unsigned int*, nTriWithVert->data)((unsigned int*)(nTriWithVert->data)); |
76 | maxTriPerVert = nTriWithVert->axis[0].size - 1; |
77 | for (ii=0; ii<3; ii++) { |
78 | vertA = (vertWithTri + 3*triIdx)[ii]; |
79 | vertB = (vertWithTri + 3*triIdx)[AIR_MOD(ii+1, 3)((ii+1)%(3) >= 0 ? (ii+1)%(3) : 3 + (ii+1)%(3))]; |
80 | /* |
81 | fprintf(stderr, "!%s: %u edge %u: vert{A,B} = %u %u\n", me, |
82 | triIdx, ii, vertA, vertB); |
83 | */ |
84 | /* find the intersection of the sets of {triangles using vertA} |
85 | and {triangles using vertB}: for reasonable surfaces should |
86 | be either 0 or 2 triangles, and if its 2, then triIdx |
87 | should be one of them */ |
88 | intxNum = flipListIntx(intxBuff, |
89 | triWithVert + (1+maxTriPerVert)*vertA, |
90 | triWithVert + (1+maxTriPerVert)*vertB); |
91 | if (2 == intxNum) { |
92 | neighIdx = intxBuff[0]; |
93 | if (neighIdx == triIdx) { |
94 | neighIdx = intxBuff[1]; |
95 | } |
96 | neighGot[ii] = AIR_TRUE1; |
97 | neighInfo[ii][0] = neighIdx; |
98 | neighInfo[ii][1] = vertB; |
99 | neighInfo[ii][2] = vertA; |
100 | } else { |
101 | neighGot[ii] = AIR_FALSE0; |
102 | } |
103 | } |
104 | return; |
105 | } |
106 | |
107 | /* |
108 | ** determines if triIdx needs to be flipped, given that it should |
109 | ** be seeing vertices vertA and vertB in that order |
110 | */ |
111 | static int |
112 | flipNeed(Nrrd *nVertWithTri, unsigned int triIdx, |
113 | unsigned int vertA, unsigned int vertB) { |
114 | unsigned int *vertWithTri, vert[3]; |
115 | int ai, bi; |
116 | |
117 | vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data)((unsigned int*)(nVertWithTri->data)); |
118 | ELL_3V_COPY(vert, vertWithTri + 3*triIdx)((vert)[0] = (vertWithTri + 3*triIdx)[0], (vert)[1] = (vertWithTri + 3*triIdx)[1], (vert)[2] = (vertWithTri + 3*triIdx)[2]); |
119 | for (ai=0; vert[ai] != vertA; ai++) |
120 | ; |
121 | for (bi=0; vert[bi] != vertB; bi++) |
122 | ; |
123 | return (1 != AIR_MOD(bi - ai, 3)((bi - ai)%(3) >= 0 ? (bi - ai)%(3) : 3 + (bi - ai)%(3))); |
124 | } |
125 | |
126 | /* |
127 | ** this is a weird dual-personality function that is the inner |
128 | ** loop of both vertex winding fixing, and the learning stage of |
129 | ** vertex splitting |
130 | ** |
131 | ** for flipping (!splitting) |
132 | ** assumes that triIdx was just popped from "okay" stack |
133 | ** (triIdx has just been fixed to have correct winding) |
134 | ** then goes through the not-yet-done neighbors of triIdx, |
135 | ** flipping them if needed, and |
136 | ** then adding those neighbors to the stack. |
137 | ** returns the number of tris added to stack |
138 | ** |
139 | ** NOTE: the "flipping" is done within the nVertWithTri representation, |
140 | ** but *not* in the limnPolyData itself. |
141 | */ |
142 | static unsigned int |
143 | neighborsCheckPush(Nrrd *nTriWithVert, Nrrd *nVertWithTri, |
144 | unsigned char *triDone, airArray *okayArr, |
145 | unsigned int *intxBuff, airArray *splitArr, |
146 | unsigned int triIdx, int splitting) { |
147 | /* static const char me[]="neighborsCheckPush"; */ |
148 | unsigned int neighGot[3], neighInfo[3][3], ii, *okay, okayIdx, |
149 | *vertWithTri, pushedNum; |
150 | |
151 | vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data)((unsigned int*)(nVertWithTri->data)); |
152 | flipNeighborsGet(nTriWithVert, nVertWithTri, |
153 | neighGot, neighInfo, |
154 | intxBuff, triIdx); |
155 | /* |
156 | for (ii=0; ii<3; ii++) { |
157 | fprintf(stderr, "!%s: %u neigh[%u]: ", me, triIdx, ii); |
158 | if (neighGot[ii]) { |
159 | fprintf(stderr, "%u (%u %u) (done %u)\n", |
160 | neighInfo[ii][0], neighInfo[ii][1], neighInfo[ii][2], |
161 | triDone[neighInfo[ii][0]]); |
162 | } else { |
163 | fprintf(stderr, "nope\n"); |
164 | } |
165 | } |
166 | */ |
167 | pushedNum = 0; |
168 | for (ii=0; ii<3; ii++) { |
169 | /* WARNING: complicated logic WRT triDone, splitting, and need */ |
170 | if (neighGot[ii]) { |
171 | unsigned int tmp, *idxLine, need; |
172 | if (!splitting) { |
173 | if (!triDone[neighInfo[ii][0]]) { |
174 | /* we only take time to learn need if as yet undone */ |
175 | need = flipNeed(nVertWithTri, neighInfo[ii][0], |
176 | neighInfo[ii][1], neighInfo[ii][2]); |
177 | if (need) { |
178 | idxLine = vertWithTri + 3*neighInfo[ii][0]; |
179 | /* here is the vertex winding flip */ |
180 | ELL_SWAP2(idxLine[0], idxLine[1], tmp)((tmp)=(idxLine[0]),(idxLine[0])=(idxLine[1]),(idxLine[1])=(tmp )); |
181 | } |
182 | } |
183 | } else { |
184 | /* we're here for splitting */ |
185 | /* we have to learn need regardless of done-ness */ |
186 | need = flipNeed(nVertWithTri, neighInfo[ii][0], |
187 | neighInfo[ii][1], neighInfo[ii][2]); |
188 | if (need && triDone[neighInfo[ii][0]]) { |
189 | /* we "need" to flip and yet we've already visited that triangle |
190 | ==> edge between triIdx and neighInfo[ii][0] needs splitting. |
191 | See if its a new split, and add it if so */ |
192 | unsigned int *split, splitIdx, splitNum, vert0, vert1; |
193 | vert0 = AIR_MIN(neighInfo[ii][1], neighInfo[ii][2])((neighInfo[ii][1]) < (neighInfo[ii][2]) ? (neighInfo[ii][ 1]) : (neighInfo[ii][2])); |
194 | vert1 = AIR_MAX(neighInfo[ii][1], neighInfo[ii][2])((neighInfo[ii][1]) > (neighInfo[ii][2]) ? (neighInfo[ii][ 1]) : (neighInfo[ii][2])); |
195 | splitNum = splitArr->len; |
196 | split = AIR_CAST(unsigned int*, splitArr->data)((unsigned int*)(splitArr->data)); |
197 | for (splitIdx=0; splitIdx<splitNum; splitIdx++) { |
198 | if (split[2 + 5*splitIdx] == vert0 |
199 | && split[3 + 5*splitIdx] == vert1) { |
200 | break; |
201 | } |
202 | } |
203 | if (splitIdx == splitNum) { |
204 | /* this is a new split, add it */ |
205 | /* |
206 | fprintf(stderr, "!%s: new split(%u,%u) (have %u)\n", |
207 | me, vert0, vert1, splitArr->len); |
208 | */ |
209 | splitIdx = airArrayLenIncr(splitArr, 1); |
210 | split = AIR_CAST(unsigned int*, splitArr->data)((unsigned int*)(splitArr->data)); |
211 | split[0 + 5*splitIdx] = triIdx; |
212 | split[1 + 5*splitIdx] = neighInfo[ii][0]; |
213 | split[2 + 5*splitIdx] = vert0; |
214 | split[3 + 5*splitIdx] = vert1; |
215 | split[4 + 5*splitIdx] = AIR_FALSE0; |
216 | } |
217 | } |
218 | } |
219 | /* regardless of splitting, we push onto the okay stack all |
220 | the un-done neighbors that we just processed */ |
221 | if (!triDone[neighInfo[ii][0]]) { |
222 | triDone[neighInfo[ii][0]] = AIR_TRUE1; |
223 | okayIdx = airArrayLenIncr(okayArr, 1); |
224 | okay = AIR_CAST(unsigned int*, okayArr->data)((unsigned int*)(okayArr->data)); |
225 | okay[okayIdx] = neighInfo[ii][0]; |
226 | ++pushedNum; |
227 | } |
228 | } /* if (neighGot[ii]) */ |
229 | } /* for ii */ |
230 | return pushedNum; |
231 | } |
232 | |
233 | /* |
234 | ** ONLY GOOD FOR limnPrimitiveTriangles!! |
235 | */ |
236 | static unsigned int |
237 | maxTrianglePerPrimitive(limnPolyData *pld) { |
238 | unsigned int ret, primIdx; |
239 | |
240 | ret = 0; |
241 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
242 | ret = AIR_MAX(ret, pld->icnt[primIdx]/3)((ret) > (pld->icnt[primIdx]/3) ? (ret) : (pld->icnt [primIdx]/3)); |
243 | } |
244 | return ret; |
245 | } |
246 | |
247 | /* |
248 | ** fills nTriWithVert with 2D array about which triangles use which vertices |
249 | */ |
250 | static int |
251 | triangleWithVertex(Nrrd *nTriWithVert, limnPolyData *pld) { |
252 | static const char me[]="triangleWithVertex"; |
253 | unsigned int *triWithVertNum, /* vert ii has triWithVertNum[ii] tris */ |
254 | *triWithVert, baseVertIdx, primIdx, vertIdx, |
255 | maxTriPerVert, totTriIdx; |
256 | airArray *mop; |
257 | |
258 | if (!(nTriWithVert && pld)) { |
259 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
260 | return 1; |
261 | } |
262 | if ((1 << limnPrimitiveTriangles) != limnPolyDataPrimitiveTypes(pld)) { |
263 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle %s primitives", me, |
264 | airEnumStr(limnPrimitive, limnPrimitiveTriangles)); |
265 | return 1; |
266 | } |
267 | |
268 | triWithVertNum = AIR_CAST(unsigned int*,((unsigned int*)(calloc(pld->xyzwNum, sizeof(unsigned int) ))) |
269 | calloc(pld->xyzwNum, sizeof(unsigned int)))((unsigned int*)(calloc(pld->xyzwNum, sizeof(unsigned int) ))); |
270 | if (!triWithVertNum) { |
271 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate temp array", me); |
272 | return 1; |
273 | } |
274 | mop = airMopNew(); |
275 | airMopAdd(mop, triWithVertNum, airFree, airMopAlways); |
276 | |
277 | /* fill in triWithVertNum */ |
278 | baseVertIdx = 0; |
279 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
280 | unsigned int triNum, triIdx, *indxLine, ii; |
281 | triNum = pld->icnt[primIdx]/3; |
282 | for (triIdx=0; triIdx<triNum; triIdx++) { |
283 | indxLine = pld->indx + baseVertIdx + 3*triIdx; |
284 | for (ii=0; ii<3; ii++) { |
285 | triWithVertNum[indxLine[ii]]++; |
286 | } |
287 | } |
288 | baseVertIdx += pld->icnt[primIdx]; |
289 | } |
290 | |
291 | /* find max # tris per vert, allocate output */ |
292 | maxTriPerVert = 0; |
293 | for (vertIdx=0; vertIdx<pld->xyzwNum; vertIdx++) { |
294 | maxTriPerVert = AIR_MAX(maxTriPerVert, triWithVertNum[vertIdx])((maxTriPerVert) > (triWithVertNum[vertIdx]) ? (maxTriPerVert ) : (triWithVertNum[vertIdx])); |
295 | } |
296 | if (nrrdMaybeAlloc_va(nTriWithVert, nrrdTypeUInt, 2, |
297 | AIR_CAST(size_t, 1 + maxTriPerVert)((size_t)(1 + maxTriPerVert)), |
298 | AIR_CAST(size_t, pld->xyzwNum)((size_t)(pld->xyzwNum)))) { |
299 | biffMovef(LIMNlimnBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate output", me); |
300 | airMopError(mop); return 1; |
301 | } |
302 | triWithVert = AIR_CAST(unsigned int*, nTriWithVert->data)((unsigned int*)(nTriWithVert->data)); |
303 | |
304 | baseVertIdx = 0; |
305 | totTriIdx = 0; |
306 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
307 | unsigned int triNum, *indxLine, *twvLine, ii, triIdx; |
308 | triNum = pld->icnt[primIdx]/3; |
309 | for (triIdx=0; triIdx<triNum; triIdx++) { |
310 | indxLine = pld->indx + baseVertIdx + 3*triIdx; |
311 | for (ii=0; ii<3; ii++) { |
312 | twvLine = triWithVert + (1+maxTriPerVert)*indxLine[ii]; |
313 | twvLine[1+twvLine[0]] = totTriIdx; |
314 | twvLine[0]++; |
315 | } |
316 | ++totTriIdx; |
317 | } |
318 | baseVertIdx += pld->icnt[primIdx]; |
319 | } |
320 | |
321 | airMopOkay(mop); |
322 | return 0; |
323 | } |
324 | |
325 | /* |
326 | ** learns which (three vertices) are with which triangle |
327 | */ |
328 | static int |
329 | vertexWithTriangle(Nrrd *nVertWithTri, limnPolyData *pld) { |
330 | static const char me[]="vertexWithTriangle"; |
331 | unsigned int baseVertIdx, primIdx, *vertWithTri, triNum; |
332 | |
333 | if (!(nVertWithTri && pld)) { |
334 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
335 | return 1; |
336 | } |
337 | if ((1 << limnPrimitiveTriangles) != limnPolyDataPrimitiveTypes(pld)) { |
338 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle %s primitives", me, |
339 | airEnumStr(limnPrimitive, limnPrimitiveTriangles)); |
340 | return 1; |
341 | } |
342 | |
343 | triNum = limnPolyDataPolygonNumber(pld); |
344 | if (nrrdMaybeAlloc_va(nVertWithTri, nrrdTypeUInt, 2, |
345 | AIR_CAST(size_t, 3)((size_t)(3)), |
346 | AIR_CAST(size_t, triNum)((size_t)(triNum)))) { |
347 | biffMovef(LIMNlimnBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate output", me); |
348 | return 1; |
349 | } |
350 | vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data)((unsigned int*)(nVertWithTri->data)); |
351 | |
352 | baseVertIdx = 0; |
353 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
354 | unsigned int triIdx, *indxLine, totTriIdx, ii; |
355 | triNum = pld->icnt[primIdx]/3; |
356 | for (triIdx=0; triIdx<triNum; triIdx++) { |
357 | totTriIdx = triIdx + baseVertIdx/3; |
358 | indxLine = pld->indx + baseVertIdx + 3*triIdx; |
359 | for (ii=0; ii<3; ii++) { |
360 | (vertWithTri + 3*totTriIdx)[ii] = indxLine[ii]; |
361 | } |
362 | } |
363 | baseVertIdx += pld->icnt[primIdx]; |
364 | } |
365 | |
366 | return 0; |
367 | } |
368 | |
369 | static int |
370 | splitListExtract(unsigned int *listLenP, |
371 | airArray *edgeArr, unsigned char *hitCount, |
372 | unsigned int firstVertIdx, unsigned int edgeDoneNum) { |
373 | static const char me[]="splitListExtract"; |
374 | unsigned int *edgeData, edgeNum, *edgeLine, edgeIdx, edgeTmp[5], |
375 | tmp, nextVertIdx, listLen; |
376 | |
377 | edgeNum = edgeArr->len; |
378 | edgeData = AIR_CAST(unsigned int*, edgeArr->data)((unsigned int*)(edgeArr->data)); |
379 | edgeNum -= edgeDoneNum; |
380 | edgeData += 5*edgeDoneNum; |
381 | |
382 | /* put first edge in first position */ |
383 | for (edgeIdx=0; edgeIdx<edgeNum; edgeIdx++) { |
384 | edgeLine = edgeData + 5*edgeIdx; |
385 | if (edgeLine[2] == firstVertIdx || edgeLine[3] == firstVertIdx) { |
386 | break; |
387 | } |
388 | } |
389 | if (edgeIdx == edgeNum) { |
390 | biffAddf(LIMNlimnBiffKey, "%s: never found first vertex %u", me, firstVertIdx); |
391 | return 1; |
392 | } |
393 | if (edgeLine[3] == firstVertIdx) { |
394 | ELL_SWAP2(edgeLine[2], edgeLine[3], tmp)((tmp)=(edgeLine[2]),(edgeLine[2])=(edgeLine[3]),(edgeLine[3] )=(tmp)); |
395 | } |
396 | ELL_5V_COPY(edgeTmp, edgeData)((edgeTmp)[0]=(edgeData)[0], (edgeTmp)[1]=(edgeData)[1], (edgeTmp )[2]=(edgeData)[2], (edgeTmp)[3]=(edgeData)[3], (edgeTmp)[4]= (edgeData)[4]); |
397 | ELL_5V_COPY(edgeData, edgeLine)((edgeData)[0]=(edgeLine)[0], (edgeData)[1]=(edgeLine)[1], (edgeData )[2]=(edgeLine)[2], (edgeData)[3]=(edgeLine)[3], (edgeData)[4 ]=(edgeLine)[4]); |
398 | ELL_5V_COPY(edgeLine, edgeTmp)((edgeLine)[0]=(edgeTmp)[0], (edgeLine)[1]=(edgeTmp)[1], (edgeLine )[2]=(edgeTmp)[2], (edgeLine)[3]=(edgeTmp)[3], (edgeLine)[4]= (edgeTmp)[4]); |
399 | |
400 | /* start looking for the rest */ |
401 | listLen = 1; |
402 | hitCount[firstVertIdx]--; |
403 | nextVertIdx = edgeData[3]; |
404 | hitCount[nextVertIdx]--; |
405 | /* |
406 | fprintf(stderr, "!%s: found first %u --> %u (tris %u %u)\n", me, |
407 | firstVertIdx, nextVertIdx, |
408 | edgeData[0], edgeData[1]); |
409 | */ |
410 | |
411 | /* the search start progresses so that we don't see the same edge twice */ |
412 | #define SEARCH \ |
413 | for (edgeIdx=listLen; edgeIdx<edgeNum; edgeIdx++) { \ |
414 | edgeLine = edgeData + 5*edgeIdx; \ |
415 | if (edgeLine[2] == nextVertIdx || edgeLine[3] == nextVertIdx) { \ |
416 | break; \ |
417 | } \ |
418 | } |
419 | SEARCH; |
420 | while (edgeIdx < edgeNum) { |
421 | if (edgeLine[3] == nextVertIdx) { |
422 | ELL_SWAP2(edgeLine[2], edgeLine[3], tmp)((tmp)=(edgeLine[2]),(edgeLine[2])=(edgeLine[3]),(edgeLine[3] )=(tmp)); |
423 | } |
424 | ELL_5V_COPY(edgeTmp, edgeData + 5*listLen)((edgeTmp)[0]=(edgeData + 5*listLen)[0], (edgeTmp)[1]=(edgeData + 5*listLen)[1], (edgeTmp)[2]=(edgeData + 5*listLen)[2], (edgeTmp )[3]=(edgeData + 5*listLen)[3], (edgeTmp)[4]=(edgeData + 5*listLen )[4]); |
425 | ELL_5V_COPY(edgeData + 5*listLen, edgeLine)((edgeData + 5*listLen)[0]=(edgeLine)[0], (edgeData + 5*listLen )[1]=(edgeLine)[1], (edgeData + 5*listLen)[2]=(edgeLine)[2], ( edgeData + 5*listLen)[3]=(edgeLine)[3], (edgeData + 5*listLen )[4]=(edgeLine)[4]); |
426 | ELL_5V_COPY(edgeLine, edgeTmp)((edgeLine)[0]=(edgeTmp)[0], (edgeLine)[1]=(edgeTmp)[1], (edgeLine )[2]=(edgeTmp)[2], (edgeLine)[3]=(edgeTmp)[3], (edgeLine)[4]= (edgeTmp)[4]); |
427 | hitCount[nextVertIdx]--; |
428 | /* |
429 | fprintf(stderr, "!%s: (len %u) found %u --> %u (tris %u %u)\n", me, |
430 | listLen, nextVertIdx, |
431 | (edgeData + 5*listLen)[3], |
432 | (edgeData + 5*listLen)[0], |
433 | (edgeData + 5*listLen)[1]); |
434 | */ |
435 | nextVertIdx = (edgeData + 5*listLen)[3]; |
436 | hitCount[nextVertIdx]--; |
437 | listLen++; |
438 | SEARCH; |
439 | } |
440 | /* |
441 | fprintf(stderr, "!%s: finishing with Len %u, ended at %u\n", me, |
442 | listLen, nextVertIdx); |
443 | */ |
444 | *listLenP = listLen; |
445 | return 0; |
446 | #undef SEARCH |
447 | } |
448 | |
449 | /* |
450 | ** returns the element of vert[] that is not v0 or v1 |
451 | */ |
452 | static unsigned int |
453 | sweepVertNext(unsigned int *vert, unsigned int v0, unsigned int v1) { |
454 | unsigned int v2; |
455 | |
456 | v2 = vert[0]; |
457 | if (v2 == v0 || v2 == v1) { |
458 | v2 = vert[1]; |
459 | } |
460 | if (v2 == v0 || v2 == v1) { |
461 | v2 = vert[2]; |
462 | } |
463 | return v2; |
464 | } |
465 | |
466 | /* |
467 | ** returns non-zero iff A and B are in {v[0],v[1],v[2]} |
468 | */ |
469 | static int |
470 | sweepHave2(unsigned int v[3], unsigned int A, unsigned B) { |
471 | int haveA, haveB; |
472 | |
473 | haveA = (A == v[0] || A == v[1] || A == v[2]); |
474 | haveB = (B == v[0] || B == v[1] || B == v[2]); |
475 | return (haveA && haveB); |
476 | } |
477 | |
478 | /* |
479 | ** returns UINT_MAX if there is no other triangle |
480 | */ |
481 | static unsigned int |
482 | sweepTriNext(unsigned int *triLine, unsigned int v0, unsigned int v1, |
483 | unsigned int triNot, Nrrd *nVertWithTri) { |
484 | unsigned int triIdx, ret, *vertLine, *vertWithTri; |
485 | |
486 | vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data)((unsigned int*)(nVertWithTri->data)); |
487 | |
488 | for (triIdx=0; triIdx<triLine[0]; triIdx++) { |
489 | if (triLine[1+triIdx] == triNot) { |
490 | continue; |
491 | } |
492 | vertLine = vertWithTri + 3*triLine[1+triIdx]; |
493 | if (sweepHave2(vertLine, v0, v1)) { |
494 | break; |
495 | } |
496 | } |
497 | if (triIdx == triLine[0]) { |
498 | ret = UINT_MAX(2147483647 *2U +1U); |
499 | } else { |
500 | ret = triLine[1+triIdx]; |
501 | } |
502 | return ret; |
503 | } |
504 | |
505 | /* |
506 | ** the sweep does NOT include triStart, but it does include whichever |
507 | ** triStop it hit (if any) |
508 | ** returns: length of sweep |
509 | ** sweep: output (does not include triStart) |
510 | ** triStartIdx: what triangle to start at |
511 | ** vertPivotIdx, vertStartIdx: two vertices of start triangle; sweep |
512 | ** proceeds around the pivot index |
513 | ** triStop{0,1}Idx: triangles to stop sweeping at |
514 | */ |
515 | static unsigned int |
516 | splitTriSweep(unsigned int *sweep, |
517 | unsigned int triStart, |
518 | unsigned int vertPivot, unsigned int vertStart, |
519 | unsigned int triStop0, unsigned int triStop1, |
520 | Nrrd *nTriWithVert, Nrrd *nVertWithTri) { |
521 | /* static const char me[]="splitTriSweep"; */ |
522 | unsigned int sweepLen; |
523 | unsigned int maxTriPerVert, *triWithVert, |
524 | *vertWithTri, *triLine, *vertLine, triCurr, vertLast, vertNext; |
525 | |
526 | maxTriPerVert = AIR_CAST(unsigned int, nTriWithVert->axis[0].size-1)((unsigned int)(nTriWithVert->axis[0].size-1)); |
527 | triWithVert = AIR_CAST(unsigned int*, nTriWithVert->data)((unsigned int*)(nTriWithVert->data)); |
528 | vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data)((unsigned int*)(nVertWithTri->data)); |
529 | |
530 | /* |
531 | fprintf(stderr, "!%s: hi, triStart %u, pivot %u, start %u, " |
532 | "stop = %u, %u\n", me, |
533 | triStart, vertPivot, vertStart, triStop0, triStop1); |
534 | */ |
535 | if (triStart == triStop0 || triStart == triStop1) { |
536 | /* nowhere to go */ |
537 | return 0; |
538 | } |
539 | |
540 | triLine = triWithVert + (1+maxTriPerVert)*vertPivot; |
541 | vertLast = vertStart; |
542 | triCurr = triStart; |
543 | sweepLen = 0; |
544 | do { |
545 | if (!(triCurr == triStart)) { |
546 | sweep[sweepLen++] = triCurr; |
547 | /* |
548 | fprintf(stderr, "!%s: saving sweep[%u] = %u\n", me, |
549 | sweepLen-1, triCurr); |
550 | */ |
551 | } |
552 | vertLine = vertWithTri + 3*triCurr; |
553 | vertNext = sweepVertNext(vertLine, vertPivot, vertLast); |
554 | /* |
555 | fprintf(stderr, "!%s: vertNext(%u,%u) = %u\n", me, |
556 | vertPivot, vertLast, vertNext); |
557 | */ |
558 | triCurr = sweepTriNext(triLine, vertPivot, vertNext, |
559 | triCurr, nVertWithTri); |
560 | /* |
561 | fprintf(stderr, "!%s: triNext(%u,%u) = %u\n", me, |
562 | vertPivot, vertNext, triCurr); |
563 | */ |
564 | vertLast = vertNext; |
565 | } while (!( UINT_MAX(2147483647 *2U +1U) == triCurr |
566 | || triStart == triCurr |
567 | || triStop0 == triCurr |
568 | || triStop1 == triCurr )); |
569 | if (!( UINT_MAX(2147483647 *2U +1U) == triCurr )) { |
570 | sweep[sweepLen++] = triCurr; |
571 | /* |
572 | fprintf(stderr, "!%s: saving sweep[%u] = %u\n", me, |
573 | sweepLen-1, triCurr); |
574 | */ |
575 | } |
576 | |
577 | return sweepLen; |
578 | } |
579 | |
580 | /* |
581 | ** track0: first triangle track, length *track0LenP |
582 | ** track1: first triangle track, length *track1LenP |
583 | ** sweep: buffer for sweep |
584 | ** |
585 | ** NOTE: triangles may be internally repeated in a track |
586 | ** |
587 | ** when vert path a loop on a non-orientable surface (e.g. mobius strip), |
588 | ** then track0 will NOT include the endpoint triangles |
589 | ** (or its not supposed to), and track1 will include them. |
590 | */ |
591 | static int |
592 | splitTriTrack(unsigned int *track0, unsigned int *track0LenP, |
593 | unsigned int *track1, unsigned int *track1LenP, |
594 | unsigned int *sweep, |
595 | Nrrd *nTriWithVert, Nrrd *nVertWithTri, |
596 | airArray *edgeArr, unsigned startIdx, unsigned int listLen, |
597 | int looping) { |
598 | static const char me[]="splitTriTrack"; |
599 | unsigned int len0, len1, *edgeData, *edgeLine, edgeIdx, triIdx, |
600 | /* maxTriPerVert, *triWithVert, *vertWithTri, */ |
601 | sweepLen, loopEnd0, loopEnd1, loopStart0, loopStart1; |
602 | int doBack0, doBack1; |
603 | |
604 | len0 = len1 = 0; |
605 | edgeData = AIR_CAST(unsigned int*, edgeArr->data)((unsigned int*)(edgeArr->data)); |
606 | edgeData += 5*startIdx; |
607 | /* maxTriPerVert = AIR_CAST(unsigned int, nTriWithVert->axis[0].size-1); */ |
608 | /* triWithVert = AIR_CAST(unsigned int*, nTriWithVert->data); */ |
609 | /* vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data); */ |
610 | |
611 | if (looping) { |
612 | loopStart0 = (edgeData)[0]; |
613 | loopStart1 = (edgeData)[1]; |
614 | loopEnd0 = (edgeData + 5*(listLen - 1))[0]; |
615 | loopEnd1 = (edgeData + 5*(listLen - 1))[1]; |
616 | /* |
617 | fprintf(stderr, "!%s: loop start = %u, %u, end = %u,%u\n", me, |
618 | loopStart0, loopStart1, loopEnd0, loopEnd1); |
619 | */ |
620 | } else { |
621 | loopStart0 = loopStart1 = UINT_MAX(2147483647 *2U +1U); |
622 | loopEnd0 = loopEnd1 = UINT_MAX(2147483647 *2U +1U); |
623 | } |
624 | |
625 | /* ,,,,,,,,,,,,,,,,,,,,, |
626 | fprintf(stderr, "!%s: 1st 2 tris %u %u, verts %u %u\n", me, |
627 | edgeData[0], edgeData[1], edgeData[2], edgeData[3]); |
628 | fprintf(stderr, "!%s: triangles at start vert %u:\n", me, edgeData[2]); |
629 | triLine = triWithVert + edgeData[2]*(1+maxTriPerVert); |
630 | for (triIdx=0; triIdx<triLine[0]; triIdx++) { |
631 | unsigned int *vertLine; |
632 | vertLine = vertWithTri + 3*triLine[1+triIdx]; |
633 | fprintf(stderr, "!%s: %u: %u (verts %u %u %u)\n", |
634 | me, triIdx, triLine[1+triIdx], |
635 | vertLine[0], vertLine[1], vertLine[2]); |
636 | } |
637 | ````````````````````` */ |
638 | |
639 | /* we turn on backward sweeping for the initial edge; |
640 | doBack{0,1} will be set explicitly at each edge thereafter */ |
641 | doBack0 = doBack1 = AIR_TRUE1; |
642 | for (edgeIdx=0; edgeIdx<(looping |
643 | ? listLen-1 |
644 | : listLen); edgeIdx++) { |
645 | unsigned int stop0, stop1; |
646 | edgeLine = edgeData + 5*edgeIdx; |
647 | /* ,,,,,,,,,,,,,,,,,,,,, |
648 | fprintf(stderr, "!%s: edge %u: vert %u->%u, tris %u, %u\n", me, |
649 | edgeIdx, edgeLine[2], edgeLine[3], |
650 | edgeLine[0], edgeLine[1]); |
651 | fprintf(stderr, "!%s: triangles at next vert %u:\n", me, edgeLine[3]); |
652 | triLine = triWithVert + edgeLine[3]*(1+maxTriPerVert); |
653 | for (triIdx=0; triIdx<triLine[0]; triIdx++) { |
654 | vertLine = vertWithTri + 3*triLine[1+triIdx]; |
655 | fprintf(stderr, "!%s: %u: %u (verts %u %u %u)\n", |
656 | me, triIdx, triLine[1+triIdx], |
657 | vertLine[0], vertLine[1], vertLine[2]); |
658 | } |
659 | ````````````````````` */ |
660 | if (0 == edgeIdx && looping) { |
661 | /* sweeps from 1st link on loop are stopped by a tris on last edge */ |
662 | stop0 = loopEnd0; |
663 | stop1 = loopEnd1; |
664 | } else { |
665 | stop0 = UINT_MAX(2147483647 *2U +1U); |
666 | stop1 = UINT_MAX(2147483647 *2U +1U); |
667 | } |
668 | if (doBack0) { |
669 | sweepLen = splitTriSweep(sweep, edgeLine[0], edgeLine[2], edgeLine[3], |
670 | stop0, stop1, nTriWithVert, nVertWithTri); |
671 | if (0 == edgeIdx && looping && sweepLen > 0) { |
672 | /* don't include either stop triangle on track 0 */ |
673 | for (triIdx=0; triIdx<sweepLen-1; triIdx++) { |
674 | track0[len0++] = sweep[sweepLen-2-triIdx]; |
675 | } |
676 | } else { |
677 | for (triIdx=0; triIdx<sweepLen; triIdx++) { |
678 | track0[len0++] = sweep[sweepLen-1-triIdx]; |
679 | } |
680 | } |
681 | track0[len0++] = edgeLine[0]; |
682 | } |
683 | if (doBack1) { |
684 | sweepLen = splitTriSweep(sweep, edgeLine[1], edgeLine[2], edgeLine[3], |
685 | stop0, stop1, nTriWithVert, nVertWithTri); |
686 | /* on this side we *do* include the stop triangle */ |
687 | for (triIdx=0; triIdx<sweepLen; triIdx++) { |
688 | track1[len1++] = sweep[sweepLen-1-triIdx]; |
689 | } |
690 | track1[len1++] = edgeLine[1]; |
691 | } |
692 | |
693 | if (edgeIdx<listLen-1) { |
694 | stop0 = (edgeLine + 5)[0]; |
695 | stop1 = (edgeLine + 5)[1]; |
696 | } else { |
697 | if (looping) { |
698 | stop0 = loopStart0; |
699 | stop1 = loopStart1; |
700 | } else { |
701 | stop0 = UINT_MAX(2147483647 *2U +1U); |
702 | stop1 = UINT_MAX(2147483647 *2U +1U); |
703 | } |
704 | } |
705 | sweepLen = splitTriSweep(sweep, edgeLine[0], edgeLine[3], edgeLine[2], |
706 | stop0, stop1, nTriWithVert, nVertWithTri); |
707 | for (triIdx=0; triIdx<sweepLen; triIdx++) { |
708 | track0[len0++] = sweep[triIdx]; |
709 | } |
710 | sweepLen = splitTriSweep(sweep, edgeLine[1], edgeLine[3], edgeLine[2], |
711 | stop0, stop1, nTriWithVert, nVertWithTri); |
712 | for (triIdx=0; triIdx<sweepLen; triIdx++) { |
713 | track1[len1++] = sweep[triIdx]; |
714 | } |
715 | if (edgeIdx<listLen-1) { |
716 | unsigned int *nextLine, tmp; |
717 | /* re-arrange the next edgeLine according to sweep results */ |
718 | nextLine = edgeData + 5*(1 + edgeIdx); |
719 | if (track0[len0-1] == nextLine[0] |
720 | && track1[len1-1] == nextLine[1]) { |
721 | /* fprintf(stderr, "!%s: tracking went 0->0, 1->1\n", me); */ |
722 | doBack0 = doBack1 = AIR_FALSE0; |
723 | } else if (track0[len0-1] == nextLine[1] |
724 | && track1[len1-1] == nextLine[0]) { |
725 | /* fprintf(stderr, "!%s: tracking went 0->1, 0->1\n", me); */ |
726 | ELL_SWAP2(nextLine[0], nextLine[1], tmp)((tmp)=(nextLine[0]),(nextLine[0])=(nextLine[1]),(nextLine[1] )=(tmp)); |
727 | doBack0 = doBack1 = AIR_FALSE0; |
728 | } else if (track0[len0-1] == nextLine[0]) { |
729 | /* fprintf(stderr, "!%s: tracking went 0->0, 1->x\n", me); */ |
730 | doBack0 = AIR_FALSE0; |
731 | doBack1 = AIR_TRUE1; |
732 | } else if (track1[len1-1] == nextLine[1]) { |
733 | /* fprintf(stderr, "!%s: tracking went 0->x, 1->1\n", me); */ |
734 | doBack0 = AIR_TRUE1; |
735 | doBack1 = AIR_FALSE0; |
736 | } else if (track0[len0-1] == nextLine[1]) { |
737 | /* fprintf(stderr, "!%s: tracking went 0->1, 1->x\n", me); */ |
738 | ELL_SWAP2(nextLine[0], nextLine[1], tmp)((tmp)=(nextLine[0]),(nextLine[0])=(nextLine[1]),(nextLine[1] )=(tmp)); |
739 | doBack0 = AIR_FALSE0; |
740 | doBack1 = AIR_TRUE1; |
741 | } else if (track1[len1-1] == nextLine[0]) { |
742 | /* fprintf(stderr, "!%s: tracking went 0->x, 1->0\n", me); */ |
743 | ELL_SWAP2(nextLine[0], nextLine[1], tmp)((tmp)=(nextLine[0]),(nextLine[0])=(nextLine[1]),(nextLine[1] )=(tmp)); |
744 | doBack0 = AIR_TRUE1; |
745 | doBack1 = AIR_FALSE0; |
746 | } else { |
747 | biffAddf(LIMNlimnBiffKey, "%s: edge %u/%u, sweep ends %u,%u != want %u,%u", me, |
748 | edgeIdx, listLen, track0[len0-1], track1[len1-1], |
749 | nextLine[0], nextLine[1]); |
750 | return 1; |
751 | } |
752 | } else { |
753 | doBack0 = doBack1 = AIR_FALSE0; |
754 | } |
755 | } |
756 | if (looping) { |
757 | /* the end of track0 shouldn't include the stop */ |
758 | len0--; |
759 | } |
760 | |
761 | *track0LenP = len0; |
762 | *track1LenP = len1; |
763 | return 0; |
764 | } |
765 | |
766 | static int |
767 | splitVertDup(limnPolyData *pld, airArray *edgeArr, |
768 | unsigned int edgeDoneNum, unsigned int listLen, |
769 | unsigned int *track, unsigned int trackLen, |
770 | int looping) { |
771 | static const char me[]="splitVertDup"; |
772 | unsigned int *vixLut, ii, vixLutLen, oldVertNum, newVertNum, *edgeData, |
773 | bitflag, trackIdx, vert0, vert1; |
774 | airArray *mop; |
775 | limnPolyData pldTmp; |
776 | |
777 | mop = airMopNew(); |
778 | edgeData = AIR_CAST(unsigned int*, edgeArr->data)((unsigned int*)(edgeArr->data)); |
779 | edgeData += 5*edgeDoneNum; |
780 | oldVertNum = pld->xyzwNum; |
781 | vixLutLen = looping ? listLen : listLen+1; |
782 | newVertNum = oldVertNum + vixLutLen; |
783 | |
784 | /* quiet compiler warnings */ |
785 | pldTmp.rgba = NULL((void*)0); |
786 | pldTmp.norm = NULL((void*)0); |
787 | pldTmp.tex2 = NULL((void*)0); |
788 | pldTmp.tang = NULL((void*)0); |
789 | |
790 | if (looping) { |
791 | vert0 = edgeData[2]; /* don't use dupe of this on first triangle */ |
792 | vert1 = edgeData[3]; /* don't use dupe of this on last triangle */ |
793 | } else { |
794 | vert0 = vert1 = UINT_MAX(2147483647 *2U +1U); |
795 | } |
796 | |
797 | /* HEY: sneakily preserve the old per-vertex arrays; we own them now */ |
798 | pldTmp.xyzw = pld->xyzw; |
799 | airMopAdd(mop, pldTmp.xyzw, airFree, airMopAlways); |
800 | pld->xyzw = NULL((void*)0); |
801 | pld->xyzwNum = 0; |
802 | bitflag = limnPolyDataInfoBitFlag(pld); |
803 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
804 | pldTmp.rgba = pld->rgba; |
805 | airMopAdd(mop, pldTmp.rgba, airFree, airMopAlways); |
806 | pld->rgba = NULL((void*)0); |
807 | pld->rgbaNum = 0; |
808 | } |
809 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
810 | pldTmp.norm = pld->norm; |
811 | airMopAdd(mop, pldTmp.norm, airFree, airMopAlways); |
812 | pld->norm = NULL((void*)0); |
813 | pld->normNum = 0; |
814 | } |
815 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
816 | pldTmp.tex2 = pld->tex2; |
817 | airMopAdd(mop, pldTmp.tex2, airFree, airMopAlways); |
818 | pld->tex2 = NULL((void*)0); |
819 | pld->tex2Num = 0; |
820 | } |
821 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
822 | pldTmp.tang = pld->tang; |
823 | airMopAdd(mop, pldTmp.tang, airFree, airMopAlways); |
824 | pld->tang = NULL((void*)0); |
825 | pld->tangNum = 0; |
826 | } |
827 | if (limnPolyDataAlloc(pld, bitflag, newVertNum, |
828 | pld->indxNum, pld->primNum)) { |
829 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate new vert # %u", me, newVertNum); |
830 | airMopError(mop); return 1; |
831 | } |
832 | |
833 | /* copy old data */ |
834 | memcpy(pld->xyzw, pldTmp.xyzw, oldVertNum*4*sizeof(float))__builtin___memcpy_chk (pld->xyzw, pldTmp.xyzw, oldVertNum *4*sizeof(float), __builtin_object_size (pld->xyzw, 0)); |
835 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
836 | memcpy(pld->rgba, pldTmp.rgba, oldVertNum*4*sizeof(unsigned char))__builtin___memcpy_chk (pld->rgba, pldTmp.rgba, oldVertNum *4*sizeof(unsigned char), __builtin_object_size (pld->rgba , 0)); |
837 | } |
838 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
839 | memcpy(pld->norm, pldTmp.norm, oldVertNum*3*sizeof(float))__builtin___memcpy_chk (pld->norm, pldTmp.norm, oldVertNum *3*sizeof(float), __builtin_object_size (pld->norm, 0)); |
840 | } |
841 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
842 | memcpy(pld->tex2, pldTmp.tex2, oldVertNum*2*sizeof(float))__builtin___memcpy_chk (pld->tex2, pldTmp.tex2, oldVertNum *2*sizeof(float), __builtin_object_size (pld->tex2, 0)); |
843 | } |
844 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
845 | memcpy(pld->tang, pldTmp.tang, oldVertNum*3*sizeof(float))__builtin___memcpy_chk (pld->tang, pldTmp.tang, oldVertNum *3*sizeof(float), __builtin_object_size (pld->tang, 0)); |
846 | } |
847 | |
848 | vixLut = AIR_CAST(unsigned int *, calloc(2*vixLutLen,((unsigned int *)(calloc(2*vixLutLen, sizeof(unsigned int)))) |
849 | sizeof(unsigned int)))((unsigned int *)(calloc(2*vixLutLen, sizeof(unsigned int)))); |
850 | airMopAdd(mop, vixLut, airFree, airMopAlways); |
851 | if (looping) { |
852 | for (ii=0; ii<vixLutLen; ii++) { |
853 | vixLut[0 + 2*ii] = edgeData[2 + 5*ii]; |
854 | vixLut[1 + 2*ii] = oldVertNum + ii; |
855 | } |
856 | } else { |
857 | for (ii=0; ii<vixLutLen-1; ii++) { |
858 | vixLut[0 + 2*ii] = edgeData[2 + 5*ii]; |
859 | vixLut[1 + 2*ii] = oldVertNum + ii; |
860 | } |
861 | /* now ii == vixLutLen-1 == listLen */ |
862 | vixLut[0 + 2*ii] = edgeData[3 + 5*(ii-1)]; |
863 | vixLut[1 + 2*ii] = oldVertNum + ii; |
864 | } |
865 | |
866 | /* copy pld's vertex information to duped vertices */ |
867 | for (ii=0; ii<vixLutLen; ii++) { |
868 | ELL_4V_COPY(pld->xyzw + 4*vixLut[1 + 2*ii],((pld->xyzw + 4*vixLut[1 + 2*ii])[0] = (pld->xyzw + 4*vixLut [0 + 2*ii])[0], (pld->xyzw + 4*vixLut[1 + 2*ii])[1] = (pld ->xyzw + 4*vixLut[0 + 2*ii])[1], (pld->xyzw + 4*vixLut[ 1 + 2*ii])[2] = (pld->xyzw + 4*vixLut[0 + 2*ii])[2], (pld-> xyzw + 4*vixLut[1 + 2*ii])[3] = (pld->xyzw + 4*vixLut[0 + 2 *ii])[3]) |
869 | pld->xyzw + 4*vixLut[0 + 2*ii])((pld->xyzw + 4*vixLut[1 + 2*ii])[0] = (pld->xyzw + 4*vixLut [0 + 2*ii])[0], (pld->xyzw + 4*vixLut[1 + 2*ii])[1] = (pld ->xyzw + 4*vixLut[0 + 2*ii])[1], (pld->xyzw + 4*vixLut[ 1 + 2*ii])[2] = (pld->xyzw + 4*vixLut[0 + 2*ii])[2], (pld-> xyzw + 4*vixLut[1 + 2*ii])[3] = (pld->xyzw + 4*vixLut[0 + 2 *ii])[3]); |
870 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
871 | ELL_4V_COPY(pld->rgba + 4*vixLut[1 + 2*ii],((pld->rgba + 4*vixLut[1 + 2*ii])[0] = (pld->rgba + 4*vixLut [0 + 2*ii])[0], (pld->rgba + 4*vixLut[1 + 2*ii])[1] = (pld ->rgba + 4*vixLut[0 + 2*ii])[1], (pld->rgba + 4*vixLut[ 1 + 2*ii])[2] = (pld->rgba + 4*vixLut[0 + 2*ii])[2], (pld-> rgba + 4*vixLut[1 + 2*ii])[3] = (pld->rgba + 4*vixLut[0 + 2 *ii])[3]) |
872 | pld->rgba + 4*vixLut[0 + 2*ii])((pld->rgba + 4*vixLut[1 + 2*ii])[0] = (pld->rgba + 4*vixLut [0 + 2*ii])[0], (pld->rgba + 4*vixLut[1 + 2*ii])[1] = (pld ->rgba + 4*vixLut[0 + 2*ii])[1], (pld->rgba + 4*vixLut[ 1 + 2*ii])[2] = (pld->rgba + 4*vixLut[0 + 2*ii])[2], (pld-> rgba + 4*vixLut[1 + 2*ii])[3] = (pld->rgba + 4*vixLut[0 + 2 *ii])[3]); |
873 | } |
874 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
875 | ELL_3V_COPY(pld->norm + 3*vixLut[1 + 2*ii],((pld->norm + 3*vixLut[1 + 2*ii])[0] = (pld->norm + 3*vixLut [0 + 2*ii])[0], (pld->norm + 3*vixLut[1 + 2*ii])[1] = (pld ->norm + 3*vixLut[0 + 2*ii])[1], (pld->norm + 3*vixLut[ 1 + 2*ii])[2] = (pld->norm + 3*vixLut[0 + 2*ii])[2]) |
876 | pld->norm + 3*vixLut[0 + 2*ii])((pld->norm + 3*vixLut[1 + 2*ii])[0] = (pld->norm + 3*vixLut [0 + 2*ii])[0], (pld->norm + 3*vixLut[1 + 2*ii])[1] = (pld ->norm + 3*vixLut[0 + 2*ii])[1], (pld->norm + 3*vixLut[ 1 + 2*ii])[2] = (pld->norm + 3*vixLut[0 + 2*ii])[2]); |
877 | } |
878 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
879 | ELL_2V_COPY(pld->tex2 + 2*vixLut[1 + 2*ii],((pld->tex2 + 2*vixLut[1 + 2*ii])[0] = (pld->tex2 + 2*vixLut [0 + 2*ii])[0], (pld->tex2 + 2*vixLut[1 + 2*ii])[1] = (pld ->tex2 + 2*vixLut[0 + 2*ii])[1]) |
880 | pld->tex2 + 2*vixLut[0 + 2*ii])((pld->tex2 + 2*vixLut[1 + 2*ii])[0] = (pld->tex2 + 2*vixLut [0 + 2*ii])[0], (pld->tex2 + 2*vixLut[1 + 2*ii])[1] = (pld ->tex2 + 2*vixLut[0 + 2*ii])[1]); |
881 | } |
882 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
883 | ELL_3V_COPY(pld->tang + 3*vixLut[1 + 2*ii],((pld->tang + 3*vixLut[1 + 2*ii])[0] = (pld->tang + 3*vixLut [0 + 2*ii])[0], (pld->tang + 3*vixLut[1 + 2*ii])[1] = (pld ->tang + 3*vixLut[0 + 2*ii])[1], (pld->tang + 3*vixLut[ 1 + 2*ii])[2] = (pld->tang + 3*vixLut[0 + 2*ii])[2]) |
884 | pld->tang + 3*vixLut[0 + 2*ii])((pld->tang + 3*vixLut[1 + 2*ii])[0] = (pld->tang + 3*vixLut [0 + 2*ii])[0], (pld->tang + 3*vixLut[1 + 2*ii])[1] = (pld ->tang + 3*vixLut[0 + 2*ii])[1], (pld->tang + 3*vixLut[ 1 + 2*ii])[2] = (pld->tang + 3*vixLut[0 + 2*ii])[2]); |
885 | } |
886 | } |
887 | |
888 | /* for triangles in track, update indices of duped vertices */ |
889 | /* we do this updating ONLY in the limnPolyData, and that's okay: |
890 | the split information is computed entirely from nVertWithTri |
891 | and nTriWithVert (which were based on the original polydata), |
892 | but not the current polydata */ |
893 | /* HEY: this is one place where we really exploit the fact that we only |
894 | have triangles: it makes the indxLine computation much much easier */ |
895 | for (trackIdx=0; trackIdx<trackLen; trackIdx++) { |
896 | unsigned int *indxLine, jj; |
897 | indxLine = pld->indx + 3*track[trackIdx]; |
898 | for (ii=0; ii<vixLutLen; ii++) { |
899 | for (jj=0; jj<3; jj++) { |
900 | if (indxLine[jj] == vixLut[0 + 2*ii] |
901 | && !((0 == trackIdx && indxLine[jj] == vert0) |
902 | || (trackLen-1 == trackIdx && indxLine[jj] == vert1))) { |
903 | indxLine[jj] = vixLut[1 + 2*ii]; |
904 | } |
905 | } |
906 | } |
907 | } |
908 | |
909 | airMopOkay(mop); |
910 | return 0; |
911 | } |
912 | |
913 | /* |
914 | ** edge[0, 1]: two neighboring triangles, |
915 | ** edge[2, 3]: their shared vertices |
916 | ** edge[4]: non-zero if this split has been processed |
917 | ** |
918 | ** this really makes no effort to be fast (or comprehensible) |
919 | ** |
920 | ** HEY should we be returning some statistics (e.g. how many points added)? |
921 | */ |
922 | static int |
923 | doSplitting(limnPolyData *pld, Nrrd *nTriWithVert, Nrrd *nVertWithTri, |
924 | airArray *edgeArr) { |
925 | static const char me[]="doSplitting"; |
926 | unsigned int edgeIdx, *edgeData, |
927 | *edgeLine=NULL((void*)0), vertIdx, vertNum, splitNum, edgeDoneNum, listLen=0, |
928 | *track0, track0Len=0, *track1, *sweep, track1Len=0, maxTriPerVert; |
929 | unsigned char *hitCount; |
930 | airArray *mop; |
931 | int passIdx; |
932 | |
933 | if (!edgeArr->len) { |
934 | /* actually, no splitting was required! */ |
935 | return 0; |
936 | } |
937 | |
938 | mop = airMopNew(); |
939 | /* NOTE: It is necessary to save out the number of (initial) |
940 | number of vertices here, because as we do the splitting |
941 | (which is done once per track, as tracks are computed), |
942 | pld->xyzwNum will increase ... */ |
943 | vertNum = pld->xyzwNum; |
944 | hitCount = AIR_CAST(unsigned char *, calloc(vertNum,((unsigned char *)(calloc(vertNum, sizeof(unsigned char)))) |
945 | sizeof(unsigned char)))((unsigned char *)(calloc(vertNum, sizeof(unsigned char)))); |
946 | maxTriPerVert = AIR_CAST(unsigned int, nTriWithVert->axis[0].size - 1)((unsigned int)(nTriWithVert->axis[0].size - 1)); |
947 | track0 = AIR_CAST(unsigned int *, calloc(maxTriPerVert*edgeArr->len,((unsigned int *)(calloc(maxTriPerVert*edgeArr->len, sizeof (unsigned int)))) |
948 | sizeof(unsigned int)))((unsigned int *)(calloc(maxTriPerVert*edgeArr->len, sizeof (unsigned int)))); |
949 | track1 = AIR_CAST(unsigned int *, calloc(maxTriPerVert*edgeArr->len,((unsigned int *)(calloc(maxTriPerVert*edgeArr->len, sizeof (unsigned int)))) |
950 | sizeof(unsigned int)))((unsigned int *)(calloc(maxTriPerVert*edgeArr->len, sizeof (unsigned int)))); |
951 | sweep = AIR_CAST(unsigned int *, calloc(maxTriPerVert,((unsigned int *)(calloc(maxTriPerVert, sizeof(unsigned int)) )) |
952 | sizeof(unsigned int)))((unsigned int *)(calloc(maxTriPerVert, sizeof(unsigned int)) )); |
953 | if (!(hitCount && track0 && track1 && sweep)) { |
954 | biffAddf(LIMNlimnBiffKey, "%s: couldn't alloc buffers", me); |
955 | airMopError(mop); return 1; |
956 | } |
957 | airMopAdd(mop, hitCount, airFree, airMopAlways); |
958 | airMopAdd(mop, track0, airFree, airMopAlways); |
959 | airMopAdd(mop, track1, airFree, airMopAlways); |
960 | airMopAdd(mop, sweep, airFree, airMopAlways); |
961 | |
962 | edgeData = AIR_CAST(unsigned int*, edgeArr->data)((unsigned int*)(edgeArr->data)); |
963 | |
964 | /* initialize hitCount */ |
965 | for (edgeIdx=0; edgeIdx<edgeArr->len; edgeIdx++) { |
966 | unsigned int ha, hb; |
967 | edgeLine = edgeData + 5*edgeIdx; |
968 | ha = hitCount[edgeLine[2]]++; |
969 | hb = hitCount[edgeLine[3]]++; |
970 | if (ha > 2 || hb > 2) { |
971 | biffAddf(LIMNlimnBiffKey, "%s: edge %u (vert %u %u) created hit counts %u %u", me, |
972 | edgeIdx, edgeLine[2], edgeLine[3], ha, hb); |
973 | airMopError(mop); return 1; |
974 | } |
975 | } |
976 | |
977 | /* scan hitCount */ |
978 | #define SEARCH(x) \ |
979 | for (vertIdx=0; vertIdx<vertNum; vertIdx++) { \ |
980 | if ((x) == hitCount[vertIdx]) { \ |
981 | break; \ |
982 | } \ |
983 | } |
984 | |
985 | splitNum = 0; |
986 | edgeDoneNum = 0; |
987 | /* pass 0: look for singleton hits ==> non-loop tracks |
988 | pass 1: look for hitCount[2] ==> loop tracks |
989 | */ |
990 | for (passIdx=0; passIdx<2; passIdx++) { |
991 | if (0 == passIdx) { |
992 | SEARCH(1); |
993 | } else { |
994 | SEARCH(2); |
995 | } |
996 | while (vertIdx < vertNum) { |
997 | unsigned int E; |
998 | E = 0; |
999 | if (1) { |
1000 | unsigned int hitIdx, hitSum; |
1001 | hitSum = 0; |
1002 | for (hitIdx=0; hitIdx<vertNum; hitIdx++) { |
1003 | hitSum += hitCount[hitIdx]; |
1004 | } |
1005 | /* |
1006 | fprintf(stderr, "!%s: PRE hitSum = %u (pass %u)\n", me, |
1007 | hitSum, passIdx); |
1008 | */ |
1009 | } |
1010 | if (!E) E |= splitListExtract(&listLen, edgeArr, hitCount, |
1011 | vertIdx, edgeDoneNum); |
1012 | /* HEY: should do a splitListShorten() that cuts across repeated |
1013 | triangles, and then shifting downward the rest of the list. |
1014 | take care with loops. iterate until there is no shortening */ |
1015 | /* |
1016 | if (1) { |
1017 | unsigned int hitIdx, hitSum; |
1018 | hitSum = 0; |
1019 | for (hitIdx=0; hitIdx<vertNum; hitIdx++) { |
1020 | hitSum += hitCount[hitIdx]; |
1021 | } |
1022 | fprintf(stderr, "!%s: (%d) POST hitSum = %u (pass %u)\n", me, E, |
1023 | hitSum, passIdx); |
1024 | } |
1025 | if (1 == passIdx) { |
1026 | fprintf(stderr, "!%s: loop len %u, verts %u,%u --- %u,%u\n" |
1027 | " tris %u,%u --- %u,%u\n", me, |
1028 | listLen, |
1029 | (edgeData + 5*(edgeDoneNum + listLen - 1))[2], |
1030 | (edgeData + 5*(edgeDoneNum + listLen - 1))[3], |
1031 | (edgeData + 5*edgeDoneNum)[2], |
1032 | (edgeData + 5*edgeDoneNum)[3], |
1033 | (edgeData + 5*(edgeDoneNum + listLen - 1))[0], |
1034 | (edgeData + 5*(edgeDoneNum + listLen - 1))[1], |
1035 | (edgeData + 5*edgeDoneNum)[0], |
1036 | (edgeData + 5*edgeDoneNum)[1]); |
1037 | } |
1038 | */ |
1039 | if (!E) E |= splitTriTrack(track0, &track0Len, track1, &track1Len, |
1040 | sweep, nTriWithVert, nVertWithTri, |
1041 | edgeArr, edgeDoneNum, listLen, passIdx); |
1042 | /* ,,,,,,,,,,,,,,,,,,,,, |
1043 | if (!E) { |
1044 | fprintf(stderr, "!%s: track0:\n", me); |
1045 | for (triIdx=0; triIdx<track0Len; triIdx++) { |
1046 | fprintf(stderr, "!%s: %u: %u\n", me, triIdx, track0[triIdx]); |
1047 | } |
1048 | fprintf(stderr, "!%s: track1:\n", me); |
1049 | for (triIdx=0; triIdx<track1Len; triIdx++) { |
1050 | fprintf(stderr, "!%s: %u: %u\n", me, triIdx, track1[triIdx]); |
1051 | } |
1052 | } |
1053 | ````````````````````` */ |
1054 | /* see- this is the only time pld is used (so it can be modified) */ |
1055 | /* HEY: we should be using track1, since that's the one that includes |
1056 | the endpoint triangles, but on a mobius strip demo it looked worse... |
1057 | this still needs debugging */ |
1058 | if (!E) E |= splitVertDup(pld, edgeArr, edgeDoneNum, listLen, |
1059 | track0, track0Len, passIdx); |
1060 | if (E) { |
1061 | biffAddf(LIMNlimnBiffKey, "%s: trouble on split %u (done %u/%u)", me, |
1062 | splitNum, edgeDoneNum, AIR_CAST(unsigned int, edgeArr->len)((unsigned int)(edgeArr->len))); |
1063 | return 1; |
1064 | } |
1065 | edgeDoneNum += listLen; |
1066 | /* |
1067 | fprintf(stderr, "!%s: edgeDoneNum now %u (%u)\n", me, |
1068 | edgeDoneNum, AIR_CAST(unsigned int, edgeArr->len)); |
1069 | */ |
1070 | if (0 == passIdx) { |
1071 | SEARCH(1); |
1072 | } else { |
1073 | SEARCH(2); |
1074 | } |
1075 | } |
1076 | } |
1077 | #undef SEARCH |
1078 | airMopOkay(mop); |
1079 | return 0; |
1080 | } |
1081 | |
1082 | int |
1083 | _limnPolyDataVertexWindingProcess(limnPolyData *pld, int splitting) { |
1084 | static const char me[]="limnPolyDataVertexWindingProcess"; |
1085 | unsigned int |
1086 | primIdx, /* for indexing through primitives */ |
1087 | triIdx, /* for indexing through triangles in each primitive */ |
1088 | maxTriPerPrim, /* max # triangles per primitive, which is essential for |
1089 | the indexing of each triangle (in each primitive) |
1090 | into a single triangle index */ |
1091 | totTriIdx, /* another triangle index */ |
1092 | totTriNum, /* total # triangles */ |
1093 | trueTriNum, /* correct total # triangles in all primitives */ |
1094 | baseVertIdx, /* first vertex for current primitive */ |
1095 | maxTriPerVert, /* max # of tris on single vertex */ |
1096 | /* *triWithVert, 2D array ((1+maxTriPerVert) x pld->xyzwNum) |
1097 | of per-vertex triangles */ |
1098 | *vertWithTri, /* 3D array (3 x maxTriPerPrim x pld->primNum) |
1099 | of per-tri vertices (vertex indices), which is just |
1100 | a repackaging of the information in the lpld */ |
1101 | doneTriNum, /* # triangles finished so far */ |
1102 | *intxBuff, /* stupid buffer */ |
1103 | *okay, /* the stack of triangles with okay (possibly fixed) |
1104 | winding, but with some neighbors that may as yet |
1105 | need fixing */ |
1106 | *split; /* stack of 5-tuples about edges needing vertex splits: |
1107 | split[0, 1]: two neighboring triangles, |
1108 | split[2, 3]: their shared vertices |
1109 | split[4]: non-zero if this split has been processed */ |
1110 | unsigned char |
1111 | *triDone; /* 1D array (len totTriNum) record of done-ness */ |
1112 | Nrrd *nTriWithVert, *nVertWithTri; |
1113 | airArray *mop, /* house-keeping */ |
1114 | *okayArr, /* airArray around "okay" */ |
1115 | *splitArr; /* airArray around "split" */ |
1116 | airPtrPtrUnion appu; |
1117 | /* |
1118 | fprintf(stderr, "!%s: hi\n", me); |
1119 | */ |
1120 | if (!pld) { |
1121 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
1122 | return 1; |
1123 | } |
1124 | |
1125 | if (!(pld->xyzwNum && pld->primNum)) { |
1126 | /* this is empty? */ |
1127 | return 0; |
1128 | } |
1129 | |
1130 | if ((1 << limnPrimitiveTriangles) != limnPolyDataPrimitiveTypes(pld)) { |
1131 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle %s primitives", me, |
1132 | airEnumStr(limnPrimitive, limnPrimitiveTriangles)); |
1133 | return 1; |
1134 | } |
1135 | |
1136 | maxTriPerPrim = maxTrianglePerPrimitive(pld); |
1137 | totTriNum = limnPolyDataPolygonNumber(pld); |
1138 | |
1139 | mop = airMopNew(); |
1140 | triDone = AIR_CAST(unsigned char *, calloc(totTriNum,((unsigned char *)(calloc(totTriNum, sizeof(unsigned char)))) |
1141 | sizeof(unsigned char)))((unsigned char *)(calloc(totTriNum, sizeof(unsigned char)))); |
1142 | airMopAdd(mop, triDone, airFree, airMopAlways); |
1143 | if (!triDone) { |
1144 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate temp array", me); |
1145 | airMopError(mop); return 1; |
1146 | } |
1147 | |
1148 | /* allocate TriWithVert, VertWithTri, intxBuff */ |
1149 | nTriWithVert = nrrdNew(); |
1150 | airMopAdd(mop, nTriWithVert, (airMopper)nrrdNuke, airMopAlways); |
1151 | nVertWithTri = nrrdNew(); |
1152 | airMopAdd(mop, nVertWithTri, (airMopper)nrrdNuke, airMopAlways); |
1153 | if (triangleWithVertex(nTriWithVert, pld) |
1154 | || vertexWithTriangle(nVertWithTri, pld)) { |
1155 | biffAddf(LIMNlimnBiffKey, "%s: couldn't set nTriWithVert or nVertWithTri", me); |
1156 | airMopError(mop); return 1; |
1157 | } |
1158 | vertWithTri = AIR_CAST(unsigned int*, nVertWithTri->data)((unsigned int*)(nVertWithTri->data)); |
1159 | /* triWithVert = AIR_CAST(unsigned int*, nTriWithVert->data); */ |
1160 | |
1161 | maxTriPerVert = nTriWithVert->axis[0].size - 1; |
1162 | intxBuff = AIR_CAST(unsigned int*, calloc(maxTriPerVert,((unsigned int*)(calloc(maxTriPerVert, sizeof(unsigned int))) ) |
1163 | sizeof(unsigned int)))((unsigned int*)(calloc(maxTriPerVert, sizeof(unsigned int))) ); |
1164 | if (!intxBuff) { |
1165 | biffAddf(LIMNlimnBiffKey, "%s: failed to alloc an itty bitty buffer", me); |
1166 | airMopError(mop); return 1; |
1167 | } |
1168 | airMopAdd(mop, intxBuff, airFree, airMopAlways); |
1169 | |
1170 | /* |
1171 | nrrdSave("triWithVert.nrrd", nTriWithVert, NULL); |
1172 | nrrdSave("vertWithTri.nrrd", nVertWithTri, NULL); |
1173 | */ |
1174 | |
1175 | /* create the stack of recently fixed triangles */ |
1176 | appu.ui = &okay; |
1177 | okayArr = airArrayNew(appu.v, NULL((void*)0), sizeof(unsigned int), |
1178 | maxTriPerPrim); |
1179 | airMopAdd(mop, okayArr, (airMopper)airArrayNuke, airMopAlways); |
1180 | if (splitting) { |
1181 | appu.ui = &split; |
1182 | splitArr = airArrayNew(appu.v, NULL((void*)0), 5*sizeof(unsigned int), |
1183 | maxTriPerPrim); |
1184 | /* split set as it is used */ |
1185 | } else { |
1186 | splitArr = NULL((void*)0); |
1187 | split = NULL((void*)0); |
1188 | } |
1189 | |
1190 | /* the skinny */ |
1191 | doneTriNum = 0; |
1192 | trueTriNum = 0; |
1193 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
1194 | trueTriNum += pld->icnt[primIdx]/3; |
1195 | } |
1196 | /* |
1197 | fprintf(stderr, "!%s: trueTriNum %u; other tri num %u\n", me, |
1198 | trueTriNum, limnPolyDataPolygonNumber(pld)); |
1199 | */ |
1200 | while (doneTriNum < trueTriNum) { |
1201 | /* find first undone triangle, which should be on a different |
1202 | connected component than any processed so far */ |
1203 | for (totTriIdx=0; triDone[totTriIdx]; totTriIdx++) |
1204 | ; |
1205 | /* we use the winding of this triangle to determine the correct |
1206 | winding of all neighboring trianges, so this one is now done */ |
1207 | triDone[totTriIdx] = AIR_TRUE1; |
1208 | ++doneTriNum; |
1209 | /* |
1210 | fprintf(stderr, "!%s: considering tri %u done (%u)\n", |
1211 | me, totTriIdx, doneTriNum); |
1212 | */ |
1213 | doneTriNum += neighborsCheckPush(nTriWithVert, nVertWithTri, |
1214 | triDone, okayArr, intxBuff, splitArr, |
1215 | totTriIdx, splitting); |
1216 | while (okayArr->len) { |
1217 | unsigned int popped; |
1218 | popped = okay[okayArr->len-1]; |
1219 | airArrayLenIncr(okayArr, -1); |
1220 | /* |
1221 | fprintf(stderr, "!%s: popped %u\n", me, popped); |
1222 | */ |
1223 | doneTriNum += neighborsCheckPush(nTriWithVert, nVertWithTri, |
1224 | triDone, okayArr, intxBuff, splitArr, |
1225 | popped, splitting); |
1226 | } |
1227 | } |
1228 | |
1229 | if (splitting) { |
1230 | if (doSplitting(pld, nTriWithVert, nVertWithTri, splitArr)) { |
1231 | biffAddf(LIMNlimnBiffKey, "%s: problem doing vertex splitting", me); |
1232 | return 1; |
1233 | } |
1234 | } else { |
1235 | /* Copy from nVertWithTri back into polydata */ |
1236 | baseVertIdx = 0; |
1237 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
1238 | unsigned int triNum, *indxLine, ii; |
1239 | triNum = pld->icnt[primIdx]/3; |
1240 | for (triIdx=0; triIdx<triNum; triIdx++) { |
1241 | totTriIdx = triIdx + baseVertIdx/3; |
1242 | indxLine = pld->indx + baseVertIdx + 3*triIdx; |
1243 | for (ii=0; ii<3; ii++) { |
1244 | indxLine[ii] = (vertWithTri + 3*totTriIdx)[ii]; |
1245 | } |
1246 | } |
1247 | baseVertIdx += pld->icnt[primIdx]; |
1248 | } |
1249 | } |
1250 | |
1251 | airMopOkay(mop); |
1252 | return 0; |
1253 | } |
1254 | |
1255 | /* |
1256 | ** with non-zero splitting, this does vertex splitting so that |
1257 | ** non-orientable surfaces can be rendered without seams. Took longer |
1258 | ** to implement than intended. |
1259 | ** |
1260 | ** HEY: still has a bug in handling which triangles get which |
1261 | ** (new) vertices when the seam in the non-orientable surface |
1262 | ** is a closed loop. Can be debugged later... |
1263 | */ |
1264 | int |
1265 | limnPolyDataVertexWindingFix(limnPolyData *pld, int splitting) { |
1266 | static const char me[]="limnPolyDataVertexWindingFix"; |
1267 | |
1268 | if (!splitting) { |
1269 | if (_limnPolyDataVertexWindingProcess(pld, AIR_FALSE0)) { |
1270 | biffAddf(LIMNlimnBiffKey, "%s: trouble", me); |
1271 | return 1; |
1272 | } |
1273 | } else { |
1274 | if (_limnPolyDataVertexWindingProcess(pld, AIR_FALSE0) |
1275 | || _limnPolyDataVertexWindingProcess(pld, AIR_TRUE1)) { |
1276 | biffAddf(LIMNlimnBiffKey, "%s: trouble", me); |
1277 | return 1; |
1278 | } |
1279 | } |
1280 | return 0; |
1281 | } |
1282 | |
1283 | int |
1284 | limnPolyDataCCFind(limnPolyData *pld) { |
1285 | static const char me[]="limnPolyDataCCFind"; |
1286 | unsigned int realTriNum, *triMap, *triWithVert, vertIdx, |
1287 | *indxOld, *indxNew, primNumOld, *icntOld, *icntNew, *baseIndx, |
1288 | primIdxNew, primNumNew, passIdx, eqvNum=0; |
1289 | unsigned char *typeOld, *typeNew; |
1290 | Nrrd *nTriWithVert, *nccSize, *nTriMap; |
1291 | airArray *mop, *eqvArr; |
1292 | |
1293 | if (!pld) { |
1294 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
1295 | return 1; |
1296 | } |
1297 | if (!(pld->xyzwNum && pld->primNum)) { |
1298 | /* this is empty? */ |
1299 | return 0; |
1300 | } |
1301 | |
1302 | if ((1 << limnPrimitiveTriangles) != limnPolyDataPrimitiveTypes(pld)) { |
1303 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle %s primitives", me, |
1304 | airEnumStr(limnPrimitive, limnPrimitiveTriangles)); |
1305 | return 1; |
1306 | } |
1307 | |
1308 | mop = airMopNew(); |
1309 | |
1310 | realTriNum = limnPolyDataPolygonNumber(pld); |
1311 | |
1312 | eqvArr = airArrayNew(NULL((void*)0), NULL((void*)0), 2*sizeof(unsigned int), |
1313 | /* this is only a heuristic */ pld->xyzwNum); |
1314 | airMopAdd(mop, eqvArr, (airMopper)airArrayNuke, airMopAlways); |
1315 | |
1316 | nTriWithVert = nrrdNew(); |
1317 | airMopAdd(mop, nTriWithVert, (airMopper)nrrdNuke, airMopAlways); |
1318 | if (triangleWithVertex(nTriWithVert, pld)) { |
1319 | biffAddf(LIMNlimnBiffKey, "%s: couldn't set nTriWithVert", me); |
1320 | airMopError(mop); return 1; |
1321 | } |
1322 | |
1323 | /* simple profiling showed that stupid amount of time was spent |
1324 | adding the equivalences. So we go in two passes- first two see |
1325 | how many equivalences are needed, and then actually adding them */ |
1326 | /* yea, so, its like you don't really even need an airArray ... */ |
1327 | triWithVert = AIR_CAST(unsigned int*, nTriWithVert->data)((unsigned int*)(nTriWithVert->data)); |
1328 | for (passIdx=0; passIdx<2; passIdx++) { |
1329 | if (0 == passIdx) { |
1330 | eqvNum = 0; |
1331 | } else { |
1332 | airArrayLenPreSet(eqvArr, eqvNum); |
1333 | } |
1334 | for (vertIdx=0; vertIdx<nTriWithVert->axis[1].size; vertIdx++) { |
1335 | unsigned int *triLine, triIdx; |
1336 | triLine = triWithVert + vertIdx*(nTriWithVert->axis[0].size); |
1337 | for (triIdx=1; triIdx<triLine[0]; triIdx++) { |
1338 | if (0 == passIdx) { |
1339 | ++eqvNum; |
1340 | } else { |
1341 | airEqvAdd(eqvArr, triLine[1], triLine[1+triIdx]); |
1342 | } |
1343 | } |
1344 | } |
1345 | } |
1346 | |
1347 | nTriMap = nrrdNew(); |
1348 | airMopAdd(mop, nTriMap, (airMopper)nrrdNuke, airMopAlways); |
1349 | nccSize = nrrdNew(); |
1350 | airMopAdd(mop, nccSize, (airMopper)nrrdNuke, airMopAlways); |
1351 | if (nrrdMaybeAlloc_va(nTriMap, nrrdTypeUInt, 1, |
1352 | AIR_CAST(size_t, realTriNum)((size_t)(realTriNum)))) { |
1353 | biffMovef(LIMNlimnBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate equivalence map", me); |
1354 | airMopError(mop); return 1; |
1355 | } |
1356 | triMap = AIR_CAST(unsigned int*, nTriMap->data)((unsigned int*)(nTriMap->data)); |
1357 | primNumNew = airEqvMap(eqvArr, triMap, realTriNum); |
1358 | if (nrrdHisto(nccSize, nTriMap, NULL((void*)0), NULL((void*)0), primNumNew, nrrdTypeUInt)) { |
1359 | biffMovef(LIMNlimnBiffKey, NRRDnrrdBiffKey, "%s: couldn't histogram CC map", me); |
1360 | airMopError(mop); return 1; |
1361 | } |
1362 | |
1363 | /* indxNumOld == indxNumNew */ |
1364 | indxOld = pld->indx; |
1365 | primNumOld = pld->primNum; |
1366 | if (1 != primNumOld) { |
1367 | biffAddf(LIMNlimnBiffKey, "%s: sorry! stupid implementation can't " |
1368 | "do primNum %u (only 1)", |
1369 | me, primNumOld); |
1370 | airMopError(mop); return 1; |
1371 | } |
1372 | typeOld = pld->type; |
1373 | icntOld = pld->icnt; |
1374 | indxNew = AIR_CAST(unsigned int*,((unsigned int*)(calloc(pld->indxNum, sizeof(unsigned int) ))) |
1375 | calloc(pld->indxNum, sizeof(unsigned int)))((unsigned int*)(calloc(pld->indxNum, sizeof(unsigned int) ))); |
1376 | typeNew = AIR_CAST(unsigned char*,((unsigned char*)(calloc(primNumNew, sizeof(unsigned char)))) |
1377 | calloc(primNumNew, sizeof(unsigned char)))((unsigned char*)(calloc(primNumNew, sizeof(unsigned char)))); |
1378 | icntNew = AIR_CAST(unsigned int*,((unsigned int*)(calloc(primNumNew, sizeof(unsigned int)))) |
1379 | calloc(primNumNew, sizeof(unsigned int)))((unsigned int*)(calloc(primNumNew, sizeof(unsigned int)))); |
1380 | if (!(indxNew && typeNew && icntNew)) { |
1381 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate new polydata arrays", me); |
1382 | airMopError(mop); return 1; |
1383 | } |
1384 | pld->indx = indxNew; |
1385 | pld->primNum = primNumNew; |
1386 | pld->type = typeNew; |
1387 | pld->icnt = icntNew; |
1388 | airMopAdd(mop, indxOld, airFree, airMopAlways); |
1389 | airMopAdd(mop, typeOld, airFree, airMopAlways); |
1390 | airMopAdd(mop, icntOld, airFree, airMopAlways); |
1391 | |
1392 | /* this multi-pass thing is really stupid |
1393 | (and assumes stupid primNumOld = 1) */ |
1394 | baseIndx = pld->indx; |
1395 | for (primIdxNew=0; primIdxNew<pld->primNum; primIdxNew++) { |
1396 | unsigned int realTriIdx; |
1397 | pld->type[primIdxNew] = limnPrimitiveTriangles; |
1398 | pld->icnt[primIdxNew] = 0; |
1399 | for (realTriIdx=0; realTriIdx<realTriNum; realTriIdx++) { |
1400 | if (triMap[realTriIdx] == primIdxNew) { |
1401 | ELL_3V_COPY(baseIndx, indxOld + 3*realTriIdx)((baseIndx)[0] = (indxOld + 3*realTriIdx)[0], (baseIndx)[1] = (indxOld + 3*realTriIdx)[1], (baseIndx)[2] = (indxOld + 3*realTriIdx )[2]); |
1402 | baseIndx += 3; |
1403 | pld->icnt[primIdxNew] += 3; |
1404 | } |
1405 | } |
1406 | } |
1407 | |
1408 | airMopOkay(mop); |
1409 | return 0; |
1410 | } |
1411 | |
1412 | int |
1413 | limnPolyDataPrimitiveSort(limnPolyData *pld, const Nrrd *_nval) { |
1414 | static const char me[]="limnPolyDataPrimitiveSort"; |
1415 | Nrrd *nval, *nrec; |
1416 | const Nrrd *ntwo[2]; |
1417 | airArray *mop; |
1418 | double *rec; |
1419 | unsigned int primIdx, **startIndx, *indxNew, *baseIndx, *icntNew; |
1420 | unsigned char *typeNew; |
1421 | int E; |
1422 | |
1423 | if (!(pld && _nval)) { |
1424 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
1425 | return 1; |
1426 | } |
1427 | if (!(1 == _nval->dim |
1428 | && nrrdTypeBlock != _nval->type |
1429 | && _nval->axis[0].size == pld->primNum)) { |
1430 | biffAddf(LIMNlimnBiffKey, "%s: need 1-D %u-len scalar nrrd " |
1431 | "(not %u-D type %s, axis[0].size %u)", me, |
1432 | pld->primNum, |
1433 | _nval->dim, airEnumStr(nrrdType, _nval->type), |
1434 | AIR_CAST(unsigned int, _nval->axis[0].size)((unsigned int)(_nval->axis[0].size))); |
1435 | return 1; |
1436 | } |
1437 | |
1438 | mop = airMopNew(); |
1439 | nval = nrrdNew(); |
1440 | airMopAdd(mop, nval, (airMopper)nrrdNuke, airMopAlways); |
1441 | nrec = nrrdNew(); |
1442 | airMopAdd(mop, nrec, (airMopper)nrrdNuke, airMopAlways); |
1443 | E = 0; |
1444 | if (!E) E |= nrrdConvert(nval, _nval, nrrdTypeDouble); |
1445 | ntwo[0] = nval; |
1446 | ntwo[1] = nval; |
1447 | if (!E) E |= nrrdJoin(nrec, ntwo, 2, 0, AIR_TRUE1); |
1448 | if (E) { |
1449 | biffMovef(LIMNlimnBiffKey, NRRDnrrdBiffKey, "%s: problem creating records", me); |
1450 | airMopError(mop); return 1; |
1451 | } |
1452 | rec = AIR_CAST(double *, nrec->data)((double *)(nrec->data)); |
1453 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
1454 | rec[1 + 2*primIdx] = primIdx; |
1455 | } |
1456 | qsort(rec, pld->primNum, 2*sizeof(double), |
1457 | nrrdValCompareInv[nrrdTypeDouble]); |
1458 | |
1459 | startIndx = AIR_CAST(unsigned int**, calloc(pld->primNum,((unsigned int**)(calloc(pld->primNum, sizeof(unsigned int *)))) |
1460 | sizeof(unsigned int*)))((unsigned int**)(calloc(pld->primNum, sizeof(unsigned int *)))); |
1461 | indxNew = AIR_CAST(unsigned int*, calloc(pld->indxNum,((unsigned int*)(calloc(pld->indxNum, sizeof(unsigned int) ))) |
1462 | sizeof(unsigned int)))((unsigned int*)(calloc(pld->indxNum, sizeof(unsigned int) ))); |
1463 | icntNew = AIR_CAST(unsigned int*, calloc(pld->primNum,((unsigned int*)(calloc(pld->primNum, sizeof(unsigned int) ))) |
1464 | sizeof(unsigned int)))((unsigned int*)(calloc(pld->primNum, sizeof(unsigned int) ))); |
1465 | typeNew = AIR_CAST(unsigned char*, calloc(pld->primNum,((unsigned char*)(calloc(pld->primNum, sizeof(unsigned char )))) |
1466 | sizeof(unsigned char)))((unsigned char*)(calloc(pld->primNum, sizeof(unsigned char )))); |
1467 | if (!(startIndx && indxNew && icntNew && typeNew)) { |
1468 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocated temp buffers", me); |
1469 | airMopError(mop); return 1; |
1470 | } |
1471 | airMopAdd(mop, startIndx, airFree, airMopAlways); |
1472 | |
1473 | baseIndx = pld->indx; |
1474 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
1475 | startIndx[primIdx] = baseIndx; |
1476 | baseIndx += pld->icnt[primIdx]; |
1477 | } |
1478 | baseIndx = indxNew; |
1479 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
1480 | unsigned int sortIdx; |
1481 | sortIdx = AIR_CAST(unsigned int, rec[1 + 2*primIdx])((unsigned int)(rec[1 + 2*primIdx])); |
1482 | memcpy(baseIndx, startIndx[sortIdx],__builtin___memcpy_chk (baseIndx, startIndx[sortIdx], pld-> icnt[sortIdx]*sizeof(unsigned int), __builtin_object_size (baseIndx , 0)) |
1483 | pld->icnt[sortIdx]*sizeof(unsigned int))__builtin___memcpy_chk (baseIndx, startIndx[sortIdx], pld-> icnt[sortIdx]*sizeof(unsigned int), __builtin_object_size (baseIndx , 0)); |
1484 | icntNew[primIdx] = pld->icnt[sortIdx]; |
1485 | typeNew[primIdx] = pld->type[sortIdx]; |
1486 | baseIndx += pld->icnt[sortIdx]; |
1487 | } |
1488 | |
1489 | airFree(pld->indx); |
1490 | pld->indx = indxNew; |
1491 | airFree(pld->type); |
1492 | pld->type = typeNew; |
1493 | airFree(pld->icnt); |
1494 | pld->icnt = icntNew; |
1495 | |
1496 | airMopOkay(mop); |
1497 | return 0; |
1498 | } |
1499 | |
1500 | int |
1501 | limnPolyDataVertexWindingFlip(limnPolyData *pld) { |
1502 | static const char me[]="limnPolyDataVertexWindingFlip"; |
1503 | unsigned int baseVertIdx, primIdx; |
1504 | |
1505 | if (!pld) { |
1506 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
1507 | return 1; |
1508 | } |
1509 | if ((1 << limnPrimitiveTriangles) != limnPolyDataPrimitiveTypes(pld)) { |
1510 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle %s primitives", me, |
1511 | airEnumStr(limnPrimitive, limnPrimitiveTriangles)); |
1512 | return 1; |
1513 | } |
1514 | |
1515 | baseVertIdx = 0; |
1516 | for (primIdx=0; primIdx<pld->primNum; primIdx++) { |
1517 | unsigned int triNum, triIdx, *indxLine, tmpIdx; |
1518 | triNum = pld->icnt[primIdx]/3; |
1519 | for (triIdx=0; triIdx<triNum; triIdx++) { |
1520 | indxLine = pld->indx + baseVertIdx + 3*triIdx; |
1521 | ELL_SWAP2(indxLine[0], indxLine[2], tmpIdx)((tmpIdx)=(indxLine[0]),(indxLine[0])=(indxLine[2]),(indxLine [2])=(tmpIdx)); |
1522 | } |
1523 | baseVertIdx += pld->icnt[primIdx]; |
1524 | } |
1525 | |
1526 | return 0; |
1527 | } |
1528 | |
1529 | int |
1530 | limnPolyDataPrimitiveSelect(limnPolyData *pldOut, |
1531 | const limnPolyData *pldIn, |
1532 | const Nrrd *_nmask) { |
1533 | static const char me[]="limnPolyDataPrimitiveSelect"; |
1534 | Nrrd *nmask; |
1535 | double *mask; |
1536 | unsigned int oldBaseVertIdx, oldPrimIdx, oldVertIdx, bitflag, |
1537 | *old2newMap, *new2oldMap, |
1538 | newPrimNum, newBaseVertIdx, newPrimIdx, newIndxNum, newVertIdx, newVertNum; |
1539 | unsigned char *vertUsed; |
1540 | airArray *mop; |
1541 | |
1542 | if (!(pldOut && pldIn && _nmask)) { |
1543 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
1544 | return 1; |
1545 | } |
1546 | if (!(1 == _nmask->dim |
1547 | && nrrdTypeBlock != _nmask->type |
1548 | && _nmask->axis[0].size == pldIn->primNum)) { |
1549 | biffAddf(LIMNlimnBiffKey, "%s: need 1-D %u-len scalar nrrd " |
1550 | "(not %u-D type %s, axis[0].size %u)", me, |
1551 | pldIn->primNum, _nmask->dim, airEnumStr(nrrdType, _nmask->type), |
1552 | AIR_CAST(unsigned int, _nmask->axis[0].size)((unsigned int)(_nmask->axis[0].size))); |
1553 | return 1; |
1554 | } |
1555 | |
1556 | mop = airMopNew(); |
1557 | nmask = nrrdNew(); |
1558 | airMopAdd(mop, nmask, (airMopper)nrrdNuke, airMopAlways); |
1559 | if (nrrdConvert(nmask, _nmask, nrrdTypeDouble)) { |
1560 | biffMovef(LIMNlimnBiffKey, NRRDnrrdBiffKey, "%s: trouble converting mask to %s", me, |
1561 | airEnumStr(nrrdType, nrrdTypeDouble)); |
1562 | return 1; |
1563 | } |
1564 | mask = AIR_CAST(double *, nmask->data)((double *)(nmask->data)); |
1565 | |
1566 | old2newMap = AIR_CAST(unsigned int *, calloc(pldIn->xyzwNum,((unsigned int *)(calloc(pldIn->xyzwNum, sizeof(unsigned int )))) |
1567 | sizeof(unsigned int)))((unsigned int *)(calloc(pldIn->xyzwNum, sizeof(unsigned int )))); |
1568 | airMopAdd(mop, old2newMap, airFree, airMopAlways); |
1569 | vertUsed = AIR_CAST(unsigned char *, calloc(pldIn->xyzwNum,((unsigned char *)(calloc(pldIn->xyzwNum, sizeof(unsigned char )))) |
1570 | sizeof(unsigned char)))((unsigned char *)(calloc(pldIn->xyzwNum, sizeof(unsigned char )))); |
1571 | airMopAdd(mop, vertUsed, airFree, airMopAlways); |
1572 | |
1573 | /* initialize all verts as unused */ |
1574 | for (oldVertIdx=0; oldVertIdx<pldIn->xyzwNum; oldVertIdx++) { |
1575 | vertUsed[oldVertIdx] = AIR_FALSE0; |
1576 | } |
1577 | /* mark the used verts, and count # new indices and primitives */ |
1578 | oldBaseVertIdx = 0; |
1579 | newPrimNum = 0; |
1580 | newIndxNum = 0; |
1581 | for (oldPrimIdx=0; oldPrimIdx<pldIn->primNum; oldPrimIdx++) { |
1582 | unsigned indxIdx; |
1583 | if (mask[oldPrimIdx]) { |
1584 | for (indxIdx=0; indxIdx<pldIn->icnt[oldPrimIdx]; indxIdx++) { |
1585 | vertUsed[(pldIn->indx + oldBaseVertIdx)[indxIdx]] = AIR_TRUE1; |
1586 | } |
1587 | newIndxNum += pldIn->icnt[oldPrimIdx]; |
1588 | newPrimNum++; |
1589 | } |
1590 | oldBaseVertIdx += pldIn->icnt[oldPrimIdx]; |
1591 | } |
1592 | /* count the used verts, and set up map from old to new indices */ |
1593 | newVertNum = 0; |
1594 | for (oldVertIdx=0; oldVertIdx<pldIn->xyzwNum; oldVertIdx++) { |
1595 | if (vertUsed[oldVertIdx]) { |
1596 | old2newMap[oldVertIdx] = newVertNum++; |
1597 | } |
1598 | } |
1599 | /* allocate and fill reverse map */ |
1600 | new2oldMap = AIR_CAST(unsigned int *, calloc(newVertNum,((unsigned int *)(calloc(newVertNum, sizeof(unsigned int)))) |
1601 | sizeof(unsigned int)))((unsigned int *)(calloc(newVertNum, sizeof(unsigned int)))); |
1602 | airMopAdd(mop, new2oldMap, airFree, airMopAlways); |
1603 | newVertIdx = 0; |
1604 | for (oldVertIdx=0; oldVertIdx<pldIn->xyzwNum; oldVertIdx++) { |
1605 | if (vertUsed[oldVertIdx]) { |
1606 | new2oldMap[newVertIdx++] = oldVertIdx; |
1607 | } |
1608 | } |
1609 | |
1610 | /* allocate output polydata */ |
1611 | bitflag = limnPolyDataInfoBitFlag(pldIn); |
1612 | if (limnPolyDataAlloc(pldOut, bitflag, newVertNum, newIndxNum, newPrimNum)) { |
1613 | biffAddf(LIMNlimnBiffKey, "%s: trouble allocating output", me); |
1614 | return 1; |
1615 | } |
1616 | |
1617 | /* transfer per-primitive information from old to new */ |
1618 | oldBaseVertIdx = 0; |
1619 | newBaseVertIdx = 0; |
1620 | newPrimIdx = 0; |
1621 | for (oldPrimIdx=0; oldPrimIdx<pldIn->primNum; oldPrimIdx++) { |
1622 | if (mask[oldPrimIdx]) { |
1623 | unsigned indxIdx; |
1624 | pldOut->icnt[newPrimIdx] = pldIn->icnt[oldPrimIdx]; |
1625 | pldOut->type[newPrimIdx] = pldIn->type[oldPrimIdx]; |
1626 | for (indxIdx=0; indxIdx<pldIn->icnt[oldPrimIdx]; indxIdx++) { |
1627 | oldVertIdx = (pldIn->indx + oldBaseVertIdx)[indxIdx]; |
1628 | (pldOut->indx + newBaseVertIdx)[indxIdx] = old2newMap[oldVertIdx]; |
1629 | } |
1630 | newBaseVertIdx += pldIn->icnt[oldPrimIdx]; |
1631 | newPrimIdx++; |
1632 | } |
1633 | oldBaseVertIdx += pldIn->icnt[oldPrimIdx]; |
1634 | } |
1635 | /* transfer per-vertex info */ |
1636 | for (newVertIdx=0; newVertIdx<newVertNum; newVertIdx++) { |
1637 | oldVertIdx = new2oldMap[newVertIdx]; |
1638 | ELL_4V_COPY(pldOut->xyzw + 4*newVertIdx, pldIn->xyzw + 4*oldVertIdx)((pldOut->xyzw + 4*newVertIdx)[0] = (pldIn->xyzw + 4*oldVertIdx )[0], (pldOut->xyzw + 4*newVertIdx)[1] = (pldIn->xyzw + 4*oldVertIdx)[1], (pldOut->xyzw + 4*newVertIdx)[2] = (pldIn ->xyzw + 4*oldVertIdx)[2], (pldOut->xyzw + 4*newVertIdx )[3] = (pldIn->xyzw + 4*oldVertIdx)[3]); |
1639 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
1640 | ELL_4V_COPY(pldOut->rgba + 4*newVertIdx, pldIn->rgba + 4*oldVertIdx)((pldOut->rgba + 4*newVertIdx)[0] = (pldIn->rgba + 4*oldVertIdx )[0], (pldOut->rgba + 4*newVertIdx)[1] = (pldIn->rgba + 4*oldVertIdx)[1], (pldOut->rgba + 4*newVertIdx)[2] = (pldIn ->rgba + 4*oldVertIdx)[2], (pldOut->rgba + 4*newVertIdx )[3] = (pldIn->rgba + 4*oldVertIdx)[3]); |
1641 | } |
1642 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
1643 | ELL_3V_COPY(pldOut->norm + 3*newVertIdx, pldIn->norm + 3*oldVertIdx)((pldOut->norm + 3*newVertIdx)[0] = (pldIn->norm + 3*oldVertIdx )[0], (pldOut->norm + 3*newVertIdx)[1] = (pldIn->norm + 3*oldVertIdx)[1], (pldOut->norm + 3*newVertIdx)[2] = (pldIn ->norm + 3*oldVertIdx)[2]); |
1644 | } |
1645 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
1646 | ELL_3V_COPY(pldOut->tex2 + 2*newVertIdx, pldIn->tex2 + 2*oldVertIdx)((pldOut->tex2 + 2*newVertIdx)[0] = (pldIn->tex2 + 2*oldVertIdx )[0], (pldOut->tex2 + 2*newVertIdx)[1] = (pldIn->tex2 + 2*oldVertIdx)[1], (pldOut->tex2 + 2*newVertIdx)[2] = (pldIn ->tex2 + 2*oldVertIdx)[2]); |
1647 | } |
1648 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
1649 | ELL_3V_COPY(pldOut->tang + 3*newVertIdx, pldIn->tang + 3*oldVertIdx)((pldOut->tang + 3*newVertIdx)[0] = (pldIn->tang + 3*oldVertIdx )[0], (pldOut->tang + 3*newVertIdx)[1] = (pldIn->tang + 3*oldVertIdx)[1], (pldOut->tang + 3*newVertIdx)[2] = (pldIn ->tang + 3*oldVertIdx)[2]); |
1650 | } |
1651 | } |
1652 | |
1653 | airMopOkay(mop); |
1654 | return 0; |
1655 | } |
1656 | |
1657 | /* Helper function for limnPolyDataClipMulti - clips the edge between |
1658 | * disc and kept that partially fulfills the thresholds and maintains |
1659 | * a data structure that keeps track of edges we have clipped already, |
1660 | * to avoid creating duplicate vertices. |
1661 | */ |
1662 | static int |
1663 | clipEdge(int disc, int kept, Nrrd *nval, double *thresh, int *newIdx, |
1664 | airArray *llistArr, limnPolyData *pld, unsigned int bitflag, |
1665 | limnPolyData *newpld, airArray *xyzwArr, airArray *rgbaArr, |
1666 | airArray *normArr, airArray *tex2Arr, airArray *tangArr) { |
1667 | int ref=-1, *llist=(int*)llistArr->data; |
1668 | int next=newIdx[disc]; |
1669 | double alpha=0; |
1670 | unsigned int i,q,p,nk; |
1671 | double (*lup)(const void *v, size_t I)=nrrdDLookup[nval->type]; |
1672 | /* check if we clipped the edge previously */ |
1673 | while (next!=-1) { |
1674 | if (llist[next]==kept) /* found the desired vertex */ |
1675 | return llist[next+1]; |
1676 | ref=next+2; |
1677 | next=llist[next+2]; |
1678 | } |
1679 | /* we need to interpolate - find the weight */ |
1680 | nk=(nval->dim==1)?1:nval->axis[0].size; |
1681 | for (i=0; i<nk; i++) { |
1682 | double discval = lup(nval->data, nk*disc+i); |
1683 | double keptval = lup(nval->data, nk*kept+i); |
1684 | double thisalpha = AIR_AFFINE(discval,thresh[i],keptval,0.0,1.0)( ((double)(1.0)-(0.0))*((double)(thresh[i])-(discval)) / ((double )(keptval)-(discval)) + (0.0)); |
1685 | if (thisalpha<1.0 && thisalpha>alpha) |
1686 | alpha=thisalpha; |
1687 | } |
1688 | /* add interpolated vertex */ |
1689 | q=airArrayLenIncr(xyzwArr, 1); |
1690 | ELL_4V_LERP_TT(newpld->xyzw+4*q, float, alpha, pld->xyzw+4*disc, pld->xyzw+4*kept)((newpld->xyzw+4*q)[0] = ((float)((((alpha))*(((pld->xyzw +4*kept)[0]) - ((pld->xyzw+4*disc)[0])) + ((pld->xyzw+4 *disc)[0])))), (newpld->xyzw+4*q)[1] = ((float)((((alpha)) *(((pld->xyzw+4*kept)[1]) - ((pld->xyzw+4*disc)[1])) + ( (pld->xyzw+4*disc)[1])))), (newpld->xyzw+4*q)[2] = ((float )((((alpha))*(((pld->xyzw+4*kept)[2]) - ((pld->xyzw+4*disc )[2])) + ((pld->xyzw+4*disc)[2])))), (newpld->xyzw+4*q) [3] = ((float)((((alpha))*(((pld->xyzw+4*kept)[3]) - ((pld ->xyzw+4*disc)[3])) + ((pld->xyzw+4*disc)[3]))))); |
1691 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
1692 | airArrayLenIncr(rgbaArr, 1); |
1693 | ELL_4V_LERP_TT(newpld->rgba+4*q, unsigned char, alpha, pld->rgba+4*disc, pld->rgba+4*kept)((newpld->rgba+4*q)[0] = ((unsigned char)((((alpha))*(((pld ->rgba+4*kept)[0]) - ((pld->rgba+4*disc)[0])) + ((pld-> rgba+4*disc)[0])))), (newpld->rgba+4*q)[1] = ((unsigned char )((((alpha))*(((pld->rgba+4*kept)[1]) - ((pld->rgba+4*disc )[1])) + ((pld->rgba+4*disc)[1])))), (newpld->rgba+4*q) [2] = ((unsigned char)((((alpha))*(((pld->rgba+4*kept)[2]) - ((pld->rgba+4*disc)[2])) + ((pld->rgba+4*disc)[2]))) ), (newpld->rgba+4*q)[3] = ((unsigned char)((((alpha))*((( pld->rgba+4*kept)[3]) - ((pld->rgba+4*disc)[3])) + ((pld ->rgba+4*disc)[3]))))); |
1694 | } |
1695 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
1696 | float fnorm[3]; |
1697 | double len; |
1698 | /* take special care to treat non-orientable surface normals correctly */ |
1699 | if (ELL_3V_DOT(pld->norm+3*disc, pld->norm+3*kept)((pld->norm+3*disc)[0]*(pld->norm+3*kept)[0] + (pld-> norm+3*disc)[1]*(pld->norm+3*kept)[1] + (pld->norm+3*disc )[2]*(pld->norm+3*kept)[2])<0) { |
1700 | ELL_3V_SCALE_TT(fnorm, float, -1.0, pld->norm+3*kept)((fnorm)[0] = ((float)((-1.0)*(pld->norm+3*kept)[0])), (fnorm )[1] = ((float)((-1.0)*(pld->norm+3*kept)[1])), (fnorm)[2] = ((float)((-1.0)*(pld->norm+3*kept)[2]))); |
1701 | } else { |
1702 | ELL_3V_COPY(fnorm, pld->norm+3*kept)((fnorm)[0] = (pld->norm+3*kept)[0], (fnorm)[1] = (pld-> norm+3*kept)[1], (fnorm)[2] = (pld->norm+3*kept)[2]); |
1703 | } |
1704 | airArrayLenIncr(normArr, 1); |
1705 | ELL_3V_LERP_TT(newpld->norm+3*q, float, alpha, pld->norm+3*disc, fnorm)((newpld->norm+3*q)[0] = ((float)((((alpha))*(((fnorm)[0]) - ((pld->norm+3*disc)[0])) + ((pld->norm+3*disc)[0]))) ), (newpld->norm+3*q)[1] = ((float)((((alpha))*(((fnorm)[1 ]) - ((pld->norm+3*disc)[1])) + ((pld->norm+3*disc)[1]) ))), (newpld->norm+3*q)[2] = ((float)((((alpha))*(((fnorm) [2]) - ((pld->norm+3*disc)[2])) + ((pld->norm+3*disc)[2 ]))))); |
1706 | /* re-normalize */ |
1707 | len=ELL_3V_LEN(newpld->norm+3*q)(sqrt((((newpld->norm+3*q))[0]*((newpld->norm+3*q))[0] + ((newpld->norm+3*q))[1]*((newpld->norm+3*q))[1] + ((newpld ->norm+3*q))[2]*((newpld->norm+3*q))[2]))); |
1708 | if (len>1e-20) { |
1709 | ELL_3V_SCALE_TT(newpld->norm+3*q, float, 1.0/len, newpld->norm+3*q)((newpld->norm+3*q)[0] = ((float)((1.0/len)*(newpld->norm +3*q)[0])), (newpld->norm+3*q)[1] = ((float)((1.0/len)*(newpld ->norm+3*q)[1])), (newpld->norm+3*q)[2] = ((float)((1.0 /len)*(newpld->norm+3*q)[2]))); |
1710 | } |
1711 | } |
1712 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
1713 | airArrayLenIncr(tex2Arr, 1); |
1714 | ELL_2V_LERP_TT(newpld->tex2+2*q, float, alpha, pld->tex2+2*disc, pld->tex2+2*kept)((newpld->tex2+2*q)[0] = ((float)((((alpha))*(((pld->tex2 +2*kept)[0]) - ((pld->tex2+2*disc)[0])) + ((pld->tex2+2 *disc)[0])))), (newpld->tex2+2*q)[1] = ((float)((((alpha)) *(((pld->tex2+2*kept)[1]) - ((pld->tex2+2*disc)[1])) + ( (pld->tex2+2*disc)[1]))))); |
1715 | } |
1716 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
1717 | airArrayLenIncr(tangArr, 1); |
1718 | ELL_3V_LERP_TT(newpld->tang+3*q, float, alpha, pld->tang+3*disc, pld->tang+3*kept)((newpld->tang+3*q)[0] = ((float)((((alpha))*(((pld->tang +3*kept)[0]) - ((pld->tang+3*disc)[0])) + ((pld->tang+3 *disc)[0])))), (newpld->tang+3*q)[1] = ((float)((((alpha)) *(((pld->tang+3*kept)[1]) - ((pld->tang+3*disc)[1])) + ( (pld->tang+3*disc)[1])))), (newpld->tang+3*q)[2] = ((float )((((alpha))*(((pld->tang+3*kept)[2]) - ((pld->tang+3*disc )[2])) + ((pld->tang+3*disc)[2]))))); |
1719 | } |
1720 | /* add new vertex to linked list */ |
1721 | p=airArrayLenIncr(llistArr, 1); |
1722 | llist=(int*)llistArr->data; /* update in case of re-allocation */ |
1723 | llist[3*p]=kept; |
1724 | llist[3*p+1]=q; |
1725 | llist[3*p+2]=-1; |
1726 | if (ref==-1) newIdx[disc]=3*p; |
1727 | else llist[ref]=3*p; |
1728 | return q; |
1729 | } |
1730 | |
1731 | /* |
1732 | * Clips the given triangles (limnPrimitiveTriangles) according to the |
1733 | * input matrix nval and the threshold array thresh. First axis of |
1734 | * nval are different clipping criteria, second axis are vertex |
1735 | * indices. The length of thresh has to equal the size of the first |
1736 | * axis, the vertex count in pld has to equal the size of the second |
1737 | * axis. If nval is 1D, it is assumed to have a single criterion. |
1738 | * |
1739 | * A vertex is preserved if all values are >= the respective |
1740 | * threshold; triangles with partially discarded vertices are clipped, |
1741 | * potentially generating a quad that is then triangulated arbitrarily. |
1742 | */ |
1743 | int |
1744 | limnPolyDataClipMulti(limnPolyData *pld, Nrrd *nval, double *thresh) { |
1745 | static const char me[]="limnPolyDataClipMulti"; |
1746 | unsigned char *keepVert=NULL((void*)0); |
1747 | airArray *mop; |
1748 | unsigned int E, i, idx=0; |
1749 | double (*lup)(const void *v, size_t I); |
1750 | airArray *xyzwArr, *rgbaArr=NULL((void*)0), *normArr=NULL((void*)0), *tex2Arr=NULL((void*)0), |
1751 | *tangArr=NULL((void*)0), *indxArr, *typeArr, *icntArr, *llistArr=NULL((void*)0); |
1752 | limnPolyData *newpld=NULL((void*)0); |
1753 | int *newIdx=NULL((void*)0), *llist=NULL((void*)0); |
1754 | unsigned int bitflag, nk, nvert; |
1755 | airPtrPtrUnion appu; |
1756 | |
1757 | if (!(pld && nval)) { |
1758 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
1759 | return 1; |
1760 | } |
1761 | |
1762 | if (nrrdTypeBlock == nval->type) { |
1763 | biffAddf(LIMNlimnBiffKey, "%s: need scalar type (not %s)", me, |
1764 | airEnumStr(nrrdType, nval->type)); |
1765 | return 1; |
1766 | } |
1767 | |
1768 | if (nval->dim==1) { |
1769 | nk=1; nvert=nval->axis[0].size; |
1770 | } else if (nval->dim==2) { |
1771 | nk=nval->axis[0].size; nvert=nval->axis[1].size; |
1772 | } else { |
1773 | biffAddf(LIMNlimnBiffKey, "%s: need 1D or 2D input array, got %uD", me, nval->dim); |
1774 | return 1; |
1775 | } |
1776 | if (nvert!=pld->xyzwNum) { |
1777 | biffAddf(LIMNlimnBiffKey, "%s: # verts %u != # values %u", me, |
1778 | pld->xyzwNum, nvert); |
1779 | return 1; |
1780 | } |
1781 | if ((1 << limnPrimitiveTriangles) != limnPolyDataPrimitiveTypes(pld)) { |
1782 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle %s primitives", me, |
1783 | airEnumStr(limnPrimitive, limnPrimitiveTriangles)); |
1784 | return 1; |
1785 | } |
1786 | |
1787 | /* Memory allocation in C IS a headache */ |
1788 | mop=airMopNew(); |
1789 | E = AIR_FALSE0; |
1790 | if (!E) { |
1791 | E|=!(keepVert = AIR_CAST(unsigned char *,((unsigned char *)(calloc(pld->xyzwNum, sizeof(char)))) |
Result of 'calloc' is converted to a pointer of type 'unsigned char', which is incompatible with sizeof operand type 'char' | |
1792 | calloc(pld->xyzwNum, sizeof(char)))((unsigned char *)(calloc(pld->xyzwNum, sizeof(char))))); |
1793 | } |
1794 | if (!E) { |
1795 | airMopAdd(mop, keepVert, airFree, airMopAlways); |
1796 | E|=!(newIdx = AIR_CAST(int *, malloc(pld->xyzwNum*sizeof(int)))((int *)(malloc(pld->xyzwNum*sizeof(int))))); |
1797 | } |
1798 | if (!E) { |
1799 | unsigned int incr; |
1800 | airMopAdd(mop, newIdx, airFree, airMopAlways); |
1801 | memset(newIdx, -1, sizeof(int)*pld->xyzwNum)__builtin___memset_chk (newIdx, -1, sizeof(int)*pld->xyzwNum , __builtin_object_size (newIdx, 0)); |
1802 | /* This setting of incr is arbitrary and was not optimized in any way: */ |
1803 | incr = pld->xyzwNum/10; /* 10% of previous vertex count... */ |
1804 | if (incr<50) incr=50; /* ...but at least 50. */ |
1805 | appu.i = &llist; |
1806 | E|=!(llistArr=airArrayNew(appu.v, NULL((void*)0), 3*sizeof(int), incr)); |
1807 | } |
1808 | if (!E) { |
1809 | airMopAdd(mop, llistArr, (airMopper)airArrayNuke, airMopAlways); |
1810 | E|=!(newpld = limnPolyDataNew()); |
1811 | } |
1812 | bitflag = limnPolyDataInfoBitFlag(pld); |
1813 | if (!E) { |
1814 | unsigned int incr; |
1815 | airMopAdd(mop, newpld, airFree, airMopAlways); /* "shallow" free */ |
1816 | incr = pld->xyzwNum/20; /* 5% of previous vertex count... */ |
1817 | if (incr<10) incr=10; /* ...but at least 10. */ |
1818 | appu.f = &(newpld->xyzw); |
1819 | E|=!(xyzwArr=airArrayNew(appu.v, &(newpld->xyzwNum), |
1820 | 4*sizeof(float), incr)); |
1821 | if (!E) { |
1822 | airMopAdd(mop, xyzwArr, (airMopper)airArrayNuke, airMopOnError); |
1823 | airMopAdd(mop, xyzwArr, (airMopper)airArrayNix, airMopOnOkay); |
1824 | } |
1825 | if (!E && (1 << limnPolyDataInfoRGBA) & bitflag) { |
1826 | appu.uc = &(newpld->rgba); |
1827 | E|=!(rgbaArr=airArrayNew(appu.v, &(newpld->rgbaNum), |
1828 | 4*sizeof(unsigned char), incr)); |
1829 | if (!E) { |
1830 | airMopAdd(mop, rgbaArr, (airMopper)airArrayNuke, airMopOnError); |
1831 | airMopAdd(mop, rgbaArr, (airMopper)airArrayNix, airMopOnOkay); |
1832 | } |
1833 | } |
1834 | if (!E && (1 << limnPolyDataInfoNorm) & bitflag) { |
1835 | appu.f = &(newpld->norm); |
1836 | E|=!(normArr=airArrayNew(appu.v, &(newpld->normNum), |
1837 | 3*sizeof(float), incr)); |
1838 | if (!E) { |
1839 | airMopAdd(mop, normArr, (airMopper)airArrayNuke, airMopOnError); |
1840 | airMopAdd(mop, normArr, (airMopper)airArrayNix, airMopOnOkay); |
1841 | } |
1842 | } |
1843 | if (!E && (1 << limnPolyDataInfoTex2) & bitflag) { |
1844 | appu.f = &(newpld->tex2); |
1845 | E|=!(tex2Arr=airArrayNew(appu.v, &(newpld->tex2Num), |
1846 | 2*sizeof(float), incr)); |
1847 | if (!E) { |
1848 | airMopAdd(mop, tex2Arr, (airMopper)airArrayNuke, airMopOnError); |
1849 | airMopAdd(mop, tex2Arr, (airMopper)airArrayNix, airMopOnOkay); |
1850 | } |
1851 | } |
1852 | if (!E && (1 << limnPolyDataInfoTang) & bitflag) { |
1853 | appu.f = &(newpld->tang); |
1854 | E|=!(tangArr=airArrayNew(appu.v, &(newpld->tangNum), |
1855 | 3*sizeof(float), incr)); |
1856 | if (!E) { |
1857 | airMopAdd(mop, tangArr, (airMopper)airArrayNuke, airMopOnError); |
1858 | airMopAdd(mop, tangArr, (airMopper)airArrayNix, airMopOnOkay); |
1859 | } |
1860 | } |
1861 | if (!E) { |
1862 | incr = pld->indxNum/20; /* 5% of previous index count... */ |
1863 | if (incr<10) incr=10; /* ...but at least 10. */ |
1864 | appu.ui = &(newpld->indx); |
1865 | E|=!(indxArr=airArrayNew(appu.v, &(newpld->indxNum), |
1866 | sizeof(unsigned int), incr)); |
1867 | if (!E) { |
1868 | airMopAdd(mop, indxArr, (airMopper)airArrayNuke, airMopOnError); |
1869 | airMopAdd(mop, indxArr, (airMopper)airArrayNix, airMopOnOkay); |
1870 | } |
1871 | } |
1872 | if (!E) { |
1873 | incr = pld->primNum/10; /* 10% of previous primNum... */ |
1874 | if (incr<1) incr=1; /* ...but at least 1. */ |
1875 | appu.uc = &(newpld->type); |
1876 | E|=!(typeArr=airArrayNew(appu.v, &(newpld->primNum), |
1877 | sizeof(unsigned char), incr)); |
1878 | if (!E) { |
1879 | airMopAdd(mop, typeArr, (airMopper)airArrayNuke, airMopOnError); |
1880 | airMopAdd(mop, typeArr, (airMopper)airArrayNix, airMopOnOkay); |
1881 | } |
1882 | appu.ui = &(newpld->icnt); |
1883 | E|=!(icntArr=airArrayNew(appu.v, NULL((void*)0), |
1884 | sizeof(unsigned int), incr)); |
1885 | if (!E) { |
1886 | airMopAdd(mop, icntArr, (airMopper)airArrayNuke, airMopOnError); |
1887 | airMopAdd(mop, icntArr, (airMopper)airArrayNix, airMopOnOkay); |
1888 | } |
1889 | } |
1890 | } |
1891 | if (E) { |
1892 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate buffers", me); |
1893 | airMopError(mop); return 1; |
1894 | } |
1895 | |
1896 | /* mark vertices, leaving at 0 means "discard" */ |
1897 | lup = nrrdDLookup[nval->type]; |
1898 | for (i=0; i<pld->xyzwNum; i++) { |
1899 | unsigned int j, keep = AIR_TRUE1; |
1900 | for (j=0; j<nk; j++, idx++) { |
1901 | if (lup(nval->data, idx) < thresh[j]) |
1902 | keep = AIR_FALSE0; |
1903 | } |
1904 | if (keep) { |
1905 | keepVert[i]=AIR_TRUE1; |
1906 | } |
1907 | } |
1908 | |
1909 | /* now, iterate over all primitives and triangles */ |
1910 | |
1911 | /* Note: If keepVert[i]==AIR_TRUE, newIdx[i] is its new index; else, it is |
1912 | * an index j into llist, which is a linked list: |
1913 | * llist[j] == other (kept) end of the edge |
1914 | * llist[j+1] == index of new vertex for that edge |
1915 | * llist[j+2] == next index into llist |
1916 | */ |
1917 | |
1918 | /* TODO: All the airArray stuff should have allocation error checking */ |
1919 | idx=0; |
1920 | for (i=0; i<pld->primNum; i++) { |
1921 | int j, oldTriNum=pld->icnt[i]/3, newTriNum=0; |
1922 | unsigned int kept=0, disck=0; /* index of last kept / discarded vertex */ |
1923 | for (j=0; j<oldTriNum; j++, idx+=3) { |
1924 | unsigned int p, quad[4]; |
1925 | int k, keepN=0; |
1926 | for (k=0; k<3; k++) { |
1927 | unsigned int oldidx=pld->indx[idx+k]; |
1928 | if (keepVert[oldidx]) { |
1929 | keepN++; kept=oldidx; |
1930 | /* make sure the vertex is copied over */ |
1931 | if (newIdx[oldidx]==-1) { |
1932 | unsigned int q=newIdx[oldidx]=airArrayLenIncr(xyzwArr, 1); |
1933 | ELL_4V_COPY(newpld->xyzw+4*q, pld->xyzw+4*oldidx)((newpld->xyzw+4*q)[0] = (pld->xyzw+4*oldidx)[0], (newpld ->xyzw+4*q)[1] = (pld->xyzw+4*oldidx)[1], (newpld->xyzw +4*q)[2] = (pld->xyzw+4*oldidx)[2], (newpld->xyzw+4*q)[ 3] = (pld->xyzw+4*oldidx)[3]); |
1934 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
1935 | airArrayLenIncr(rgbaArr, 1); |
1936 | ELL_4V_COPY(newpld->rgba+4*q, pld->rgba+4*oldidx)((newpld->rgba+4*q)[0] = (pld->rgba+4*oldidx)[0], (newpld ->rgba+4*q)[1] = (pld->rgba+4*oldidx)[1], (newpld->rgba +4*q)[2] = (pld->rgba+4*oldidx)[2], (newpld->rgba+4*q)[ 3] = (pld->rgba+4*oldidx)[3]); |
1937 | } |
1938 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
1939 | airArrayLenIncr(normArr, 1); |
1940 | ELL_3V_COPY(newpld->norm+3*q, pld->norm+3*oldidx)((newpld->norm+3*q)[0] = (pld->norm+3*oldidx)[0], (newpld ->norm+3*q)[1] = (pld->norm+3*oldidx)[1], (newpld->norm +3*q)[2] = (pld->norm+3*oldidx)[2]); |
1941 | } |
1942 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
1943 | airArrayLenIncr(tex2Arr, 1); |
1944 | ELL_2V_COPY(newpld->tex2+2*q, pld->tex2+2*oldidx)((newpld->tex2+2*q)[0] = (pld->tex2+2*oldidx)[0], (newpld ->tex2+2*q)[1] = (pld->tex2+2*oldidx)[1]); |
1945 | } |
1946 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
1947 | airArrayLenIncr(tangArr, 1); |
1948 | ELL_3V_COPY(newpld->tang+3*q, pld->tang+3*oldidx)((newpld->tang+3*q)[0] = (pld->tang+3*oldidx)[0], (newpld ->tang+3*q)[1] = (pld->tang+3*oldidx)[1], (newpld->tang +3*q)[2] = (pld->tang+3*oldidx)[2]); |
1949 | } |
1950 | } |
1951 | } else { |
1952 | disck=k; |
1953 | } |
1954 | } |
1955 | switch (keepN) { |
1956 | case 0: /* nothing to be done; discard this triangle */ |
1957 | break; |
1958 | case 1: /* result of clipping is a single triangle */ |
1959 | newTriNum++; |
1960 | p=airArrayLenIncr(indxArr, 3); |
1961 | for (k=0; k<3; k++) { |
1962 | if (keepVert[pld->indx[idx+k]]) |
1963 | newpld->indx[p+k]=newIdx[pld->indx[idx+k]]; |
1964 | else |
1965 | newpld->indx[p+k]=clipEdge(pld->indx[idx+k], kept, nval, thresh, |
1966 | newIdx, llistArr, pld, bitflag, newpld, |
1967 | xyzwArr, rgbaArr, normArr, |
1968 | tex2Arr, tangArr); |
1969 | } |
1970 | break; |
1971 | case 2: /* result of clipping is a quad, triangulate */ |
1972 | newTriNum+=2; |
1973 | p=0; |
1974 | for (k=0; k<3; k++) { |
1975 | if (keepVert[pld->indx[idx+k]]) quad[p++]=newIdx[pld->indx[idx+k]]; |
1976 | else { |
1977 | quad[p++]=clipEdge(pld->indx[idx+k], pld->indx[idx+(disck+2)%3], |
1978 | nval, thresh, newIdx, llistArr, |
1979 | pld, bitflag, newpld, xyzwArr, rgbaArr, |
1980 | normArr, tex2Arr, tangArr); |
1981 | quad[p++]=clipEdge(pld->indx[idx+k], pld->indx[idx+(disck+1)%3], |
1982 | nval, thresh, newIdx, llistArr, |
1983 | pld, bitflag, newpld, xyzwArr, rgbaArr, |
1984 | normArr, tex2Arr, tangArr); |
1985 | } |
1986 | } |
1987 | p=airArrayLenIncr(indxArr, 6); |
1988 | ELL_3V_SET(newpld->indx+p, quad[0], quad[1], quad[3])((newpld->indx+p)[0] = (quad[0]), (newpld->indx+p)[1] = (quad[1]), (newpld->indx+p)[2] = (quad[3])); |
1989 | ELL_3V_SET(newpld->indx+p+3, quad[1], quad[2], quad[3])((newpld->indx+p+3)[0] = (quad[1]), (newpld->indx+p+3)[ 1] = (quad[2]), (newpld->indx+p+3)[2] = (quad[3])); |
1990 | break; |
1991 | case 3: /* simply copy the existing triangle */ |
1992 | newTriNum++; |
1993 | p=airArrayLenIncr(indxArr, 3); |
1994 | for (k=0; k<3; k++) { |
1995 | newpld->indx[p+k]=newIdx[pld->indx[idx+k]]; |
1996 | } |
1997 | break; |
1998 | } |
1999 | } |
2000 | if (newTriNum>0) { |
2001 | unsigned int p=airArrayLenIncr(typeArr, 1); |
2002 | airArrayLenIncr(icntArr, 1); |
2003 | newpld->type[p]=limnPrimitiveTriangles; |
2004 | newpld->icnt[p]=newTriNum*3; |
2005 | } |
2006 | } |
2007 | |
2008 | /* finally, replace contents of pld with new data */ |
2009 | airFree(pld->xyzw); |
2010 | airFree(pld->rgba); |
2011 | airFree(pld->norm); |
2012 | airFree(pld->tex2); |
2013 | airFree(pld->tang); |
2014 | airFree(pld->indx); |
2015 | airFree(pld->type); |
2016 | airFree(pld->icnt); |
2017 | memcpy(pld, newpld, sizeof(limnPolyData))__builtin___memcpy_chk (pld, newpld, sizeof(limnPolyData), __builtin_object_size (pld, 0)); |
2018 | |
2019 | airMopOkay(mop); |
2020 | return 0; |
2021 | } |
2022 | |
2023 | /* Simple wrapper around limnPolyDataClipMulti, in case of only one |
2024 | * clipping criterion. |
2025 | */ |
2026 | int |
2027 | limnPolyDataClip(limnPolyData *pld, Nrrd *nval, double thresh) { |
2028 | return limnPolyDataClipMulti(pld, nval, &thresh); |
2029 | } |
2030 | |
2031 | /* limnPolyDataCompress: |
2032 | * returns a "compressed" copy of the given limnPolyData pld that only |
2033 | * contains vertices that are referenced by some primitive |
2034 | * returns NULL and adds a message to biff upon error |
2035 | */ |
2036 | limnPolyData * |
2037 | limnPolyDataCompress(const limnPolyData *pld) { |
2038 | static const char me[]="limnPolyDataCompress"; |
2039 | limnPolyData *ret = NULL((void*)0); |
2040 | unsigned int infoBitFlag=0, vertNum=0, i, used_indxNum=0; |
2041 | int *vertMap; |
2042 | if (pld==NULL((void*)0)) { |
2043 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
2044 | return NULL((void*)0); |
2045 | } |
2046 | infoBitFlag=limnPolyDataInfoBitFlag(pld); |
2047 | vertMap=(int*) calloc(pld->xyzwNum,sizeof(int)); |
2048 | if (vertMap==NULL((void*)0)) { |
2049 | biffAddf(LIMNlimnBiffKey, "%s: could not allocate memory", me); |
2050 | return NULL((void*)0); |
2051 | } |
2052 | /* how many indices are actually used? */ |
2053 | for (i=0; i<pld->primNum; i++) { |
2054 | used_indxNum+=pld->icnt[i]; |
2055 | } |
2056 | /* loop over all indices and mark referenced vertices in vertMap */ |
2057 | for (i=0; i<used_indxNum; i++) { |
2058 | vertMap[pld->indx[i]]=1; |
2059 | } |
2060 | /* turn vertMap into an index map */ |
2061 | for (i=0; i<pld->xyzwNum; i++) { |
2062 | if (vertMap[i]==0) |
2063 | vertMap[i]=-1; |
2064 | else |
2065 | vertMap[i]=vertNum++; |
2066 | } |
2067 | /* allocate new limnPolyData */ |
2068 | if (NULL((void*)0) == (ret=limnPolyDataNew()) || |
2069 | 0!=limnPolyDataAlloc(ret, infoBitFlag, vertNum, |
2070 | used_indxNum, pld->primNum)) { |
2071 | biffAddf(LIMNlimnBiffKey, "%s: Could not allocate result", me); |
2072 | free(vertMap); |
2073 | return NULL((void*)0); |
2074 | } |
2075 | /* fill the newly allocated structure */ |
2076 | for (i=0; i<pld->xyzwNum; i++) { |
2077 | if (vertMap[i]>=0) { |
2078 | ELL_4V_COPY(ret->xyzw+4*vertMap[i], pld->xyzw+4*i)((ret->xyzw+4*vertMap[i])[0] = (pld->xyzw+4*i)[0], (ret ->xyzw+4*vertMap[i])[1] = (pld->xyzw+4*i)[1], (ret-> xyzw+4*vertMap[i])[2] = (pld->xyzw+4*i)[2], (ret->xyzw+ 4*vertMap[i])[3] = (pld->xyzw+4*i)[3]); |
2079 | } |
2080 | } |
2081 | if (ret->rgba!=NULL((void*)0)) { |
2082 | for (i=0; i<pld->xyzwNum; i++) { |
2083 | if (vertMap[i]>=0) { |
2084 | ELL_4V_COPY(ret->rgba+4*vertMap[i], pld->rgba+4*i)((ret->rgba+4*vertMap[i])[0] = (pld->rgba+4*i)[0], (ret ->rgba+4*vertMap[i])[1] = (pld->rgba+4*i)[1], (ret-> rgba+4*vertMap[i])[2] = (pld->rgba+4*i)[2], (ret->rgba+ 4*vertMap[i])[3] = (pld->rgba+4*i)[3]); |
2085 | } |
2086 | } |
2087 | } |
2088 | if (ret->norm!=NULL((void*)0)) { |
2089 | for (i=0; i<pld->xyzwNum; i++) { |
2090 | if (vertMap[i]>=0) { |
2091 | ELL_3V_COPY(ret->norm+3*vertMap[i], pld->norm+3*i)((ret->norm+3*vertMap[i])[0] = (pld->norm+3*i)[0], (ret ->norm+3*vertMap[i])[1] = (pld->norm+3*i)[1], (ret-> norm+3*vertMap[i])[2] = (pld->norm+3*i)[2]); |
2092 | } |
2093 | } |
2094 | } |
2095 | if (ret->tex2!=NULL((void*)0)) { |
2096 | for (i=0; i<pld->xyzwNum; i++) { |
2097 | if (vertMap[i]>=0) { |
2098 | ELL_2V_COPY(ret->tex2+2*vertMap[i], pld->tex2+2*i)((ret->tex2+2*vertMap[i])[0] = (pld->tex2+2*i)[0], (ret ->tex2+2*vertMap[i])[1] = (pld->tex2+2*i)[1]); |
2099 | } |
2100 | } |
2101 | } |
2102 | if (ret->tang!=NULL((void*)0)) { |
2103 | for (i=0; i<pld->xyzwNum; i++) { |
2104 | if (vertMap[i]>=0) { |
2105 | ELL_3V_COPY(ret->tang+3*vertMap[i], pld->tang+3*i)((ret->tang+3*vertMap[i])[0] = (pld->tang+3*i)[0], (ret ->tang+3*vertMap[i])[1] = (pld->tang+3*i)[1], (ret-> tang+3*vertMap[i])[2] = (pld->tang+3*i)[2]); |
2106 | } |
2107 | } |
2108 | } |
2109 | for (i=0; i<used_indxNum; i++) { |
2110 | ret->indx[i]=vertMap[pld->indx[i]]; |
2111 | } |
2112 | memcpy(ret->type, pld->type, sizeof(char)*pld->primNum)__builtin___memcpy_chk (ret->type, pld->type, sizeof(char )*pld->primNum, __builtin_object_size (ret->type, 0)); |
2113 | memcpy(ret->icnt, pld->icnt, sizeof(int)*pld->primNum)__builtin___memcpy_chk (ret->icnt, pld->icnt, sizeof(int )*pld->primNum, __builtin_object_size (ret->icnt, 0)); |
2114 | |
2115 | free(vertMap); |
2116 | |
2117 | return ret; |
2118 | } |
2119 | |
2120 | /* limnPolyDataJoin: |
2121 | * concatenates the primitives in all num limnPolyDatas given in plds |
2122 | * and returns the result as a newly allocated limnPolyData |
2123 | * the new limnPolyData will only have color/normals/texture coordinates |
2124 | * if _all_ input limnPolyDatas had the respective attribute |
2125 | * returns NULL and adds a message to biff upon error |
2126 | */ |
2127 | limnPolyData *limnPolyDataJoin(const limnPolyData **plds, |
2128 | unsigned int num) { |
2129 | static const char me[]="limnPolyDataJoin"; |
2130 | limnPolyData *ret = NULL((void*)0); |
2131 | unsigned int infoBitFlag=(1 << limnPolyDataInfoRGBA) | |
2132 | (1 << limnPolyDataInfoNorm) | |
2133 | (1 << limnPolyDataInfoTex2) | |
2134 | (1 << limnPolyDataInfoTang); /* by default, assume we have all these */ |
2135 | unsigned int vertNum=0, indxNum=0, primNum=0; |
2136 | unsigned int i; |
2137 | if (plds==NULL((void*)0)) { |
2138 | biffAddf(LIMNlimnBiffKey, "%s: got NULL pointer", me); |
2139 | return NULL((void*)0); |
2140 | } |
2141 | /* loop over all input plds to find infoBitFlag and the total number of |
2142 | * vertices / indices / primitives */ |
2143 | for (i=0; i<num; i++) { |
2144 | if (plds[i]==NULL((void*)0)) { |
2145 | biffAddf(LIMNlimnBiffKey, "%s: plds[%d] is a NULL pointer", me, i); |
2146 | return NULL((void*)0); |
2147 | } |
2148 | infoBitFlag &= limnPolyDataInfoBitFlag(plds[i]); |
2149 | vertNum += plds[i]->xyzwNum; |
2150 | indxNum += plds[i]->indxNum; |
2151 | primNum += plds[i]->primNum; |
2152 | } |
2153 | if (NULL((void*)0) == (ret=limnPolyDataNew()) || |
2154 | 0!=limnPolyDataAlloc(ret, infoBitFlag, vertNum, indxNum, primNum)) { |
2155 | biffAddf(LIMNlimnBiffKey, "%s: Could not allocate result", me); |
2156 | return NULL((void*)0); |
2157 | } |
2158 | /* loop again over all input plds and fill the newly allocated structure */ |
2159 | vertNum=indxNum=primNum=0; |
2160 | for (i=0; i<num; i++) { |
2161 | unsigned int j, used_indxNum=0; |
2162 | memcpy(ret->xyzw+4*vertNum, plds[i]->xyzw,__builtin___memcpy_chk (ret->xyzw+4*vertNum, plds[i]->xyzw , sizeof(float)*4*plds[i]->xyzwNum, __builtin_object_size ( ret->xyzw+4*vertNum, 0)) |
2163 | sizeof(float)*4*plds[i]->xyzwNum)__builtin___memcpy_chk (ret->xyzw+4*vertNum, plds[i]->xyzw , sizeof(float)*4*plds[i]->xyzwNum, __builtin_object_size ( ret->xyzw+4*vertNum, 0)); |
2164 | if (ret->rgba!=NULL((void*)0)) { |
2165 | memcpy(ret->rgba+4*vertNum, plds[i]->rgba,__builtin___memcpy_chk (ret->rgba+4*vertNum, plds[i]->rgba , sizeof(unsigned char)*4*plds[i]->xyzwNum, __builtin_object_size (ret->rgba+4*vertNum, 0)) |
2166 | sizeof(unsigned char)*4*plds[i]->xyzwNum)__builtin___memcpy_chk (ret->rgba+4*vertNum, plds[i]->rgba , sizeof(unsigned char)*4*plds[i]->xyzwNum, __builtin_object_size (ret->rgba+4*vertNum, 0)); |
2167 | } |
2168 | if (ret->norm!=NULL((void*)0)) { |
2169 | memcpy(ret->norm+3*vertNum, plds[i]->norm,__builtin___memcpy_chk (ret->norm+3*vertNum, plds[i]->norm , sizeof(float)*3*plds[i]->xyzwNum, __builtin_object_size ( ret->norm+3*vertNum, 0)) |
2170 | sizeof(float)*3*plds[i]->xyzwNum)__builtin___memcpy_chk (ret->norm+3*vertNum, plds[i]->norm , sizeof(float)*3*plds[i]->xyzwNum, __builtin_object_size ( ret->norm+3*vertNum, 0)); |
2171 | } |
2172 | if (ret->tex2!=NULL((void*)0)) { |
2173 | memcpy(ret->tex2+2*vertNum, plds[i]->tex2,__builtin___memcpy_chk (ret->tex2+2*vertNum, plds[i]->tex2 , sizeof(float)*2*plds[i]->xyzwNum, __builtin_object_size ( ret->tex2+2*vertNum, 0)) |
2174 | sizeof(float)*2*plds[i]->xyzwNum)__builtin___memcpy_chk (ret->tex2+2*vertNum, plds[i]->tex2 , sizeof(float)*2*plds[i]->xyzwNum, __builtin_object_size ( ret->tex2+2*vertNum, 0)); |
2175 | } |
2176 | if (ret->tang!=NULL((void*)0)) { |
2177 | memcpy(ret->tang+3*vertNum, plds[i]->tang,__builtin___memcpy_chk (ret->tang+3*vertNum, plds[i]->tang , sizeof(float)*3*plds[i]->xyzwNum, __builtin_object_size ( ret->tang+3*vertNum, 0)) |
2178 | sizeof(float)*3*plds[i]->xyzwNum)__builtin___memcpy_chk (ret->tang+3*vertNum, plds[i]->tang , sizeof(float)*3*plds[i]->xyzwNum, __builtin_object_size ( ret->tang+3*vertNum, 0)); |
2179 | } |
2180 | for (j=0; j<plds[i]->indxNum; j++) { |
2181 | ret->indx[indxNum+j]=vertNum+plds[i]->indx[j]; |
2182 | } |
2183 | for (j=0; j<plds[i]->primNum; j++) { |
2184 | ret->type[primNum+j]=plds[i]->type[j]; |
2185 | ret->icnt[primNum+j]=plds[i]->icnt[j]; |
2186 | /* need to keep track of how many indices are actually used */ |
2187 | used_indxNum+=plds[i]->icnt[j]; |
2188 | } |
2189 | vertNum+=plds[i]->xyzwNum; |
2190 | indxNum+=used_indxNum; |
2191 | primNum+=plds[i]->primNum; |
2192 | } |
2193 | return ret; |
2194 | } |
2195 | |
2196 | int |
2197 | limnPolyDataEdgeHalve(limnPolyData *pldOut, |
2198 | const limnPolyData *pldIn) { |
2199 | static const char me[]="limnPolyDataEdgeHalve"; |
2200 | Nrrd *nnewvert; |
2201 | unsigned int *newvert, nvold, nvidx, triidx, trinum, vlo, vhi, bitflag; |
2202 | airArray *mop; |
2203 | |
2204 | if ((1 << limnPrimitiveTriangles) != limnPolyDataPrimitiveTypes(pldIn)) { |
2205 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle %s primitives", me, |
2206 | airEnumStr(limnPrimitive, limnPrimitiveTriangles)); |
2207 | return 1; |
2208 | } |
2209 | if (1 != pldIn->primNum) { |
2210 | biffAddf(LIMNlimnBiffKey, "%s: sorry, can only handle a single primitive", me); |
2211 | return 1; |
2212 | } |
2213 | mop = airMopNew(); |
2214 | nnewvert = nrrdNew(); |
2215 | airMopAdd(mop, nnewvert, AIR_CAST(airMopper, nrrdNuke)((airMopper)(nrrdNuke)), airMopAlways); |
2216 | nvold = pldIn->xyzwNum; |
2217 | if (nrrdMaybeAlloc_va(nnewvert, nrrdTypeUInt, 2, nvold, nvold)) { |
2218 | biffMovef(LIMNlimnBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate buffer", me); |
2219 | airMopError(mop); return 1; |
2220 | } |
2221 | newvert = AIR_CAST(unsigned int*, nnewvert->data)((unsigned int*)(nnewvert->data)); |
2222 | |
2223 | /* run through triangles, recording edges with the new vertex index */ |
2224 | nvidx = nvold; |
2225 | trinum = pldIn->indxNum/3; |
2226 | for (triidx=0; triidx<trinum; triidx++) { |
2227 | vlo = pldIn->indx[0 + 3*triidx]; |
2228 | vhi = pldIn->indx[1 + 3*triidx]; |
2229 | if (!newvert[vlo + nvold*vhi]) { |
2230 | newvert[vlo + nvold*vhi] = newvert[vhi + nvold*vlo] = nvidx++; |
2231 | } |
2232 | vlo = pldIn->indx[1 + 3*triidx]; |
2233 | vhi = pldIn->indx[2 + 3*triidx]; |
2234 | if (!newvert[vlo + nvold*vhi]) { |
2235 | newvert[vlo + nvold*vhi] = newvert[vhi + nvold*vlo] = nvidx++; |
2236 | } |
2237 | vlo = pldIn->indx[2 + 3*triidx]; |
2238 | vhi = pldIn->indx[0 + 3*triidx]; |
2239 | if (!newvert[vlo + nvold*vhi]) { |
2240 | newvert[vlo + nvold*vhi] = newvert[vhi + nvold*vlo] = nvidx++; |
2241 | } |
2242 | } |
2243 | |
2244 | /* allocate output */ |
2245 | bitflag = limnPolyDataInfoBitFlag(pldIn); |
2246 | if (limnPolyDataAlloc(pldOut, bitflag, nvidx, 3*4*trinum, 1)) { |
2247 | biffAddf(LIMNlimnBiffKey, "%s: trouble allocating output", me); |
2248 | airMopError(mop); return 1; |
2249 | } |
2250 | pldOut->type[0] = limnPrimitiveTriangles; |
2251 | pldOut->icnt[0] = 3*4*trinum; |
2252 | |
2253 | /* set output indx */ |
2254 | for (triidx=0; triidx<trinum; triidx++) { |
2255 | unsigned int aa, ab, bb, bc, cc, ac; |
2256 | aa = pldIn->indx[0 + 3*triidx]; |
2257 | bb = pldIn->indx[1 + 3*triidx]; |
2258 | cc = pldIn->indx[2 + 3*triidx]; |
2259 | ab = newvert[aa + nvold*bb]; |
2260 | bc = newvert[bb + nvold*cc]; |
2261 | ac = newvert[aa + nvold*cc]; |
2262 | ELL_3V_SET(pldOut->indx + 3*(0 + 4*triidx), aa, ab, ac)((pldOut->indx + 3*(0 + 4*triidx))[0] = (aa), (pldOut-> indx + 3*(0 + 4*triidx))[1] = (ab), (pldOut->indx + 3*(0 + 4*triidx))[2] = (ac)); |
2263 | ELL_3V_SET(pldOut->indx + 3*(1 + 4*triidx), ab, bc, ac)((pldOut->indx + 3*(1 + 4*triidx))[0] = (ab), (pldOut-> indx + 3*(1 + 4*triidx))[1] = (bc), (pldOut->indx + 3*(1 + 4*triidx))[2] = (ac)); |
2264 | ELL_3V_SET(pldOut->indx + 3*(2 + 4*triidx), ab, bb, bc)((pldOut->indx + 3*(2 + 4*triidx))[0] = (ab), (pldOut-> indx + 3*(2 + 4*triidx))[1] = (bb), (pldOut->indx + 3*(2 + 4*triidx))[2] = (bc)); |
2265 | ELL_3V_SET(pldOut->indx + 3*(3 + 4*triidx), ac, bc, cc)((pldOut->indx + 3*(3 + 4*triidx))[0] = (ac), (pldOut-> indx + 3*(3 + 4*triidx))[1] = (bc), (pldOut->indx + 3*(3 + 4*triidx))[2] = (cc)); |
2266 | } |
2267 | |
2268 | /* set output vertex info */ |
2269 | for (vlo=0; vlo<nvold; vlo++) { |
2270 | ELL_4V_COPY(pldOut->xyzw + 4*vlo, pldIn->xyzw + 4*vlo)((pldOut->xyzw + 4*vlo)[0] = (pldIn->xyzw + 4*vlo)[0], ( pldOut->xyzw + 4*vlo)[1] = (pldIn->xyzw + 4*vlo)[1], (pldOut ->xyzw + 4*vlo)[2] = (pldIn->xyzw + 4*vlo)[2], (pldOut-> xyzw + 4*vlo)[3] = (pldIn->xyzw + 4*vlo)[3]); |
2271 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
2272 | ELL_4V_COPY(pldOut->rgba + 4*vlo, pldIn->rgba + 4*vlo)((pldOut->rgba + 4*vlo)[0] = (pldIn->rgba + 4*vlo)[0], ( pldOut->rgba + 4*vlo)[1] = (pldIn->rgba + 4*vlo)[1], (pldOut ->rgba + 4*vlo)[2] = (pldIn->rgba + 4*vlo)[2], (pldOut-> rgba + 4*vlo)[3] = (pldIn->rgba + 4*vlo)[3]); |
2273 | } |
2274 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
2275 | ELL_3V_COPY(pldOut->norm + 3*vlo, pldIn->norm + 3*vlo)((pldOut->norm + 3*vlo)[0] = (pldIn->norm + 3*vlo)[0], ( pldOut->norm + 3*vlo)[1] = (pldIn->norm + 3*vlo)[1], (pldOut ->norm + 3*vlo)[2] = (pldIn->norm + 3*vlo)[2]); |
2276 | } |
2277 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
2278 | ELL_2V_COPY(pldOut->tex2 + 2*vlo, pldIn->tex2 + 2*vlo)((pldOut->tex2 + 2*vlo)[0] = (pldIn->tex2 + 2*vlo)[0], ( pldOut->tex2 + 2*vlo)[1] = (pldIn->tex2 + 2*vlo)[1]); |
2279 | } |
2280 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
2281 | ELL_3V_COPY(pldOut->tang + 3*vlo, pldIn->tang + 3*vlo)((pldOut->tang + 3*vlo)[0] = (pldIn->tang + 3*vlo)[0], ( pldOut->tang + 3*vlo)[1] = (pldIn->tang + 3*vlo)[1], (pldOut ->tang + 3*vlo)[2] = (pldIn->tang + 3*vlo)[2]); |
2282 | } |
2283 | for (vhi=vlo+1; vhi<nvold; vhi++) { |
2284 | unsigned int mid; |
2285 | mid = newvert[vlo + nvold*vhi]; |
2286 | if (!mid) { |
2287 | continue; |
2288 | } |
2289 | ELL_4V_LERP(pldOut->xyzw + 4*mid, 0.5f,((pldOut->xyzw + 4*mid)[0] = (((0.5f))*(((pldIn->xyzw + 4*vhi)[0]) - ((pldIn->xyzw + 4*vlo)[0])) + ((pldIn->xyzw + 4*vlo)[0])), (pldOut->xyzw + 4*mid)[1] = (((0.5f))*(((pldIn ->xyzw + 4*vhi)[1]) - ((pldIn->xyzw + 4*vlo)[1])) + ((pldIn ->xyzw + 4*vlo)[1])), (pldOut->xyzw + 4*mid)[2] = (((0.5f ))*(((pldIn->xyzw + 4*vhi)[2]) - ((pldIn->xyzw + 4*vlo) [2])) + ((pldIn->xyzw + 4*vlo)[2])), (pldOut->xyzw + 4* mid)[3] = (((0.5f))*(((pldIn->xyzw + 4*vhi)[3]) - ((pldIn-> xyzw + 4*vlo)[3])) + ((pldIn->xyzw + 4*vlo)[3]))) |
2290 | pldIn->xyzw + 4*vlo,((pldOut->xyzw + 4*mid)[0] = (((0.5f))*(((pldIn->xyzw + 4*vhi)[0]) - ((pldIn->xyzw + 4*vlo)[0])) + ((pldIn->xyzw + 4*vlo)[0])), (pldOut->xyzw + 4*mid)[1] = (((0.5f))*(((pldIn ->xyzw + 4*vhi)[1]) - ((pldIn->xyzw + 4*vlo)[1])) + ((pldIn ->xyzw + 4*vlo)[1])), (pldOut->xyzw + 4*mid)[2] = (((0.5f ))*(((pldIn->xyzw + 4*vhi)[2]) - ((pldIn->xyzw + 4*vlo) [2])) + ((pldIn->xyzw + 4*vlo)[2])), (pldOut->xyzw + 4* mid)[3] = (((0.5f))*(((pldIn->xyzw + 4*vhi)[3]) - ((pldIn-> xyzw + 4*vlo)[3])) + ((pldIn->xyzw + 4*vlo)[3]))) |
2291 | pldIn->xyzw + 4*vhi)((pldOut->xyzw + 4*mid)[0] = (((0.5f))*(((pldIn->xyzw + 4*vhi)[0]) - ((pldIn->xyzw + 4*vlo)[0])) + ((pldIn->xyzw + 4*vlo)[0])), (pldOut->xyzw + 4*mid)[1] = (((0.5f))*(((pldIn ->xyzw + 4*vhi)[1]) - ((pldIn->xyzw + 4*vlo)[1])) + ((pldIn ->xyzw + 4*vlo)[1])), (pldOut->xyzw + 4*mid)[2] = (((0.5f ))*(((pldIn->xyzw + 4*vhi)[2]) - ((pldIn->xyzw + 4*vlo) [2])) + ((pldIn->xyzw + 4*vlo)[2])), (pldOut->xyzw + 4* mid)[3] = (((0.5f))*(((pldIn->xyzw + 4*vhi)[3]) - ((pldIn-> xyzw + 4*vlo)[3])) + ((pldIn->xyzw + 4*vlo)[3]))); |
2292 | if ((1 << limnPolyDataInfoRGBA) & bitflag) { |
2293 | ELL_4V_LERP_TT(pldOut->rgba + 4*mid, unsigned char, 0.5f,((pldOut->rgba + 4*mid)[0] = ((unsigned char)((((0.5f))*(( (pldIn->rgba + 4*vhi)[0]) - ((pldIn->rgba + 4*vlo)[0])) + ((pldIn->rgba + 4*vlo)[0])))), (pldOut->rgba + 4*mid )[1] = ((unsigned char)((((0.5f))*(((pldIn->rgba + 4*vhi)[ 1]) - ((pldIn->rgba + 4*vlo)[1])) + ((pldIn->rgba + 4*vlo )[1])))), (pldOut->rgba + 4*mid)[2] = ((unsigned char)(((( 0.5f))*(((pldIn->rgba + 4*vhi)[2]) - ((pldIn->rgba + 4* vlo)[2])) + ((pldIn->rgba + 4*vlo)[2])))), (pldOut->rgba + 4*mid)[3] = ((unsigned char)((((0.5f))*(((pldIn->rgba + 4*vhi)[3]) - ((pldIn->rgba + 4*vlo)[3])) + ((pldIn->rgba + 4*vlo)[3]))))) |
2294 | pldIn->rgba + 4*vlo,((pldOut->rgba + 4*mid)[0] = ((unsigned char)((((0.5f))*(( (pldIn->rgba + 4*vhi)[0]) - ((pldIn->rgba + 4*vlo)[0])) + ((pldIn->rgba + 4*vlo)[0])))), (pldOut->rgba + 4*mid )[1] = ((unsigned char)((((0.5f))*(((pldIn->rgba + 4*vhi)[ 1]) - ((pldIn->rgba + 4*vlo)[1])) + ((pldIn->rgba + 4*vlo )[1])))), (pldOut->rgba + 4*mid)[2] = ((unsigned char)(((( 0.5f))*(((pldIn->rgba + 4*vhi)[2]) - ((pldIn->rgba + 4* vlo)[2])) + ((pldIn->rgba + 4*vlo)[2])))), (pldOut->rgba + 4*mid)[3] = ((unsigned char)((((0.5f))*(((pldIn->rgba + 4*vhi)[3]) - ((pldIn->rgba + 4*vlo)[3])) + ((pldIn->rgba + 4*vlo)[3]))))) |
2295 | pldIn->rgba + 4*vhi)((pldOut->rgba + 4*mid)[0] = ((unsigned char)((((0.5f))*(( (pldIn->rgba + 4*vhi)[0]) - ((pldIn->rgba + 4*vlo)[0])) + ((pldIn->rgba + 4*vlo)[0])))), (pldOut->rgba + 4*mid )[1] = ((unsigned char)((((0.5f))*(((pldIn->rgba + 4*vhi)[ 1]) - ((pldIn->rgba + 4*vlo)[1])) + ((pldIn->rgba + 4*vlo )[1])))), (pldOut->rgba + 4*mid)[2] = ((unsigned char)(((( 0.5f))*(((pldIn->rgba + 4*vhi)[2]) - ((pldIn->rgba + 4* vlo)[2])) + ((pldIn->rgba + 4*vlo)[2])))), (pldOut->rgba + 4*mid)[3] = ((unsigned char)((((0.5f))*(((pldIn->rgba + 4*vhi)[3]) - ((pldIn->rgba + 4*vlo)[3])) + ((pldIn->rgba + 4*vlo)[3]))))); |
2296 | } |
2297 | if ((1 << limnPolyDataInfoNorm) & bitflag) { |
2298 | float tmp; |
2299 | ELL_3V_LERP(pldOut->norm + 3*mid, 0.5f,((pldOut->norm + 3*mid)[0] = (((0.5f))*(((pldIn->norm + 3*vhi)[0]) - ((pldIn->norm + 3*vlo)[0])) + ((pldIn->norm + 3*vlo)[0])), (pldOut->norm + 3*mid)[1] = (((0.5f))*(((pldIn ->norm + 3*vhi)[1]) - ((pldIn->norm + 3*vlo)[1])) + ((pldIn ->norm + 3*vlo)[1])), (pldOut->norm + 3*mid)[2] = (((0.5f ))*(((pldIn->norm + 3*vhi)[2]) - ((pldIn->norm + 3*vlo) [2])) + ((pldIn->norm + 3*vlo)[2]))) |
2300 | pldIn->norm + 3*vlo,((pldOut->norm + 3*mid)[0] = (((0.5f))*(((pldIn->norm + 3*vhi)[0]) - ((pldIn->norm + 3*vlo)[0])) + ((pldIn->norm + 3*vlo)[0])), (pldOut->norm + 3*mid)[1] = (((0.5f))*(((pldIn ->norm + 3*vhi)[1]) - ((pldIn->norm + 3*vlo)[1])) + ((pldIn ->norm + 3*vlo)[1])), (pldOut->norm + 3*mid)[2] = (((0.5f ))*(((pldIn->norm + 3*vhi)[2]) - ((pldIn->norm + 3*vlo) [2])) + ((pldIn->norm + 3*vlo)[2]))) |
2301 | pldIn->norm + 3*vhi)((pldOut->norm + 3*mid)[0] = (((0.5f))*(((pldIn->norm + 3*vhi)[0]) - ((pldIn->norm + 3*vlo)[0])) + ((pldIn->norm + 3*vlo)[0])), (pldOut->norm + 3*mid)[1] = (((0.5f))*(((pldIn ->norm + 3*vhi)[1]) - ((pldIn->norm + 3*vlo)[1])) + ((pldIn ->norm + 3*vlo)[1])), (pldOut->norm + 3*mid)[2] = (((0.5f ))*(((pldIn->norm + 3*vhi)[2]) - ((pldIn->norm + 3*vlo) [2])) + ((pldIn->norm + 3*vlo)[2]))); |
2302 | ELL_3V_NORM_TT(pldOut->norm + 3*mid, float,(tmp = ((float)((sqrt((((pldOut->norm + 3*mid))[0]*((pldOut ->norm + 3*mid))[0] + ((pldOut->norm + 3*mid))[1]*((pldOut ->norm + 3*mid))[1] + ((pldOut->norm + 3*mid))[2]*((pldOut ->norm + 3*mid))[2]))))), ((pldOut->norm + 3*mid)[0] = ( (float)((1.0/tmp)*(pldOut->norm + 3*mid)[0])), (pldOut-> norm + 3*mid)[1] = ((float)((1.0/tmp)*(pldOut->norm + 3*mid )[1])), (pldOut->norm + 3*mid)[2] = ((float)((1.0/tmp)*(pldOut ->norm + 3*mid)[2])))) |
2303 | pldOut->norm + 3*mid, tmp)(tmp = ((float)((sqrt((((pldOut->norm + 3*mid))[0]*((pldOut ->norm + 3*mid))[0] + ((pldOut->norm + 3*mid))[1]*((pldOut ->norm + 3*mid))[1] + ((pldOut->norm + 3*mid))[2]*((pldOut ->norm + 3*mid))[2]))))), ((pldOut->norm + 3*mid)[0] = ( (float)((1.0/tmp)*(pldOut->norm + 3*mid)[0])), (pldOut-> norm + 3*mid)[1] = ((float)((1.0/tmp)*(pldOut->norm + 3*mid )[1])), (pldOut->norm + 3*mid)[2] = ((float)((1.0/tmp)*(pldOut ->norm + 3*mid)[2])))); |
2304 | } |
2305 | if ((1 << limnPolyDataInfoTex2) & bitflag) { |
2306 | ELL_2V_LERP(pldOut->tex2 + 2*mid, 0.5f,((pldOut->tex2 + 2*mid)[0] = (((0.5f))*(((pldIn->tex2 + 2*vhi)[0]) - ((pldIn->tex2 + 2*vlo)[0])) + ((pldIn->tex2 + 2*vlo)[0])), (pldOut->tex2 + 2*mid)[1] = (((0.5f))*(((pldIn ->tex2 + 2*vhi)[1]) - ((pldIn->tex2 + 2*vlo)[1])) + ((pldIn ->tex2 + 2*vlo)[1]))) |
2307 | pldIn->tex2 + 2*vlo,((pldOut->tex2 + 2*mid)[0] = (((0.5f))*(((pldIn->tex2 + 2*vhi)[0]) - ((pldIn->tex2 + 2*vlo)[0])) + ((pldIn->tex2 + 2*vlo)[0])), (pldOut->tex2 + 2*mid)[1] = (((0.5f))*(((pldIn ->tex2 + 2*vhi)[1]) - ((pldIn->tex2 + 2*vlo)[1])) + ((pldIn ->tex2 + 2*vlo)[1]))) |
2308 | pldIn->tex2 + 2*vhi)((pldOut->tex2 + 2*mid)[0] = (((0.5f))*(((pldIn->tex2 + 2*vhi)[0]) - ((pldIn->tex2 + 2*vlo)[0])) + ((pldIn->tex2 + 2*vlo)[0])), (pldOut->tex2 + 2*mid)[1] = (((0.5f))*(((pldIn ->tex2 + 2*vhi)[1]) - ((pldIn->tex2 + 2*vlo)[1])) + ((pldIn ->tex2 + 2*vlo)[1]))); |
2309 | } |
2310 | if ((1 << limnPolyDataInfoTang) & bitflag) { |
2311 | float tmp; |
2312 | ELL_3V_LERP(pldOut->tang + 3*mid, 0.5f,((pldOut->tang + 3*mid)[0] = (((0.5f))*(((pldIn->tang + 3*vhi)[0]) - ((pldIn->tang + 3*vlo)[0])) + ((pldIn->tang + 3*vlo)[0])), (pldOut->tang + 3*mid)[1] = (((0.5f))*(((pldIn ->tang + 3*vhi)[1]) - ((pldIn->tang + 3*vlo)[1])) + ((pldIn ->tang + 3*vlo)[1])), (pldOut->tang + 3*mid)[2] = (((0.5f ))*(((pldIn->tang + 3*vhi)[2]) - ((pldIn->tang + 3*vlo) [2])) + ((pldIn->tang + 3*vlo)[2]))) |
2313 | pldIn->tang + 3*vlo,((pldOut->tang + 3*mid)[0] = (((0.5f))*(((pldIn->tang + 3*vhi)[0]) - ((pldIn->tang + 3*vlo)[0])) + ((pldIn->tang + 3*vlo)[0])), (pldOut->tang + 3*mid)[1] = (((0.5f))*(((pldIn ->tang + 3*vhi)[1]) - ((pldIn->tang + 3*vlo)[1])) + ((pldIn ->tang + 3*vlo)[1])), (pldOut->tang + 3*mid)[2] = (((0.5f ))*(((pldIn->tang + 3*vhi)[2]) - ((pldIn->tang + 3*vlo) [2])) + ((pldIn->tang + 3*vlo)[2]))) |
2314 | pldIn->tang + 3*vhi)((pldOut->tang + 3*mid)[0] = (((0.5f))*(((pldIn->tang + 3*vhi)[0]) - ((pldIn->tang + 3*vlo)[0])) + ((pldIn->tang + 3*vlo)[0])), (pldOut->tang + 3*mid)[1] = (((0.5f))*(((pldIn ->tang + 3*vhi)[1]) - ((pldIn->tang + 3*vlo)[1])) + ((pldIn ->tang + 3*vlo)[1])), (pldOut->tang + 3*mid)[2] = (((0.5f ))*(((pldIn->tang + 3*vhi)[2]) - ((pldIn->tang + 3*vlo) [2])) + ((pldIn->tang + 3*vlo)[2]))); |
2315 | ELL_3V_NORM_TT(pldOut->tang + 3*mid, float,(tmp = ((float)((sqrt((((pldOut->tang + 3*mid))[0]*((pldOut ->tang + 3*mid))[0] + ((pldOut->tang + 3*mid))[1]*((pldOut ->tang + 3*mid))[1] + ((pldOut->tang + 3*mid))[2]*((pldOut ->tang + 3*mid))[2]))))), ((pldOut->tang + 3*mid)[0] = ( (float)((1.0/tmp)*(pldOut->tang + 3*mid)[0])), (pldOut-> tang + 3*mid)[1] = ((float)((1.0/tmp)*(pldOut->tang + 3*mid )[1])), (pldOut->tang + 3*mid)[2] = ((float)((1.0/tmp)*(pldOut ->tang + 3*mid)[2])))) |
2316 | pldOut->tang + 3*mid, tmp)(tmp = ((float)((sqrt((((pldOut->tang + 3*mid))[0]*((pldOut ->tang + 3*mid))[0] + ((pldOut->tang + 3*mid))[1]*((pldOut ->tang + 3*mid))[1] + ((pldOut->tang + 3*mid))[2]*((pldOut ->tang + 3*mid))[2]))))), ((pldOut->tang + 3*mid)[0] = ( (float)((1.0/tmp)*(pldOut->tang + 3*mid)[0])), (pldOut-> tang + 3*mid)[1] = ((float)((1.0/tmp)*(pldOut->tang + 3*mid )[1])), (pldOut->tang + 3*mid)[2] = ((float)((1.0/tmp)*(pldOut ->tang + 3*mid)[2])))); |
2317 | } |
2318 | } |
2319 | } |
2320 | |
2321 | airMopOkay(mop); |
2322 | return 0; |
2323 | } |
2324 | |
2325 | /* helper function for the limnPolyDataNeighborList below */ |
2326 | static void |
2327 | registerNeighbor(unsigned int *nblist, size_t *len, unsigned int *maxnb, |
2328 | unsigned int u, unsigned int v) { |
2329 | unsigned int idx=nblist[u], pointer=u, depth=1; |
2330 | while (idx!=0) { |
2331 | if (nblist[idx]==v) |
2332 | return; /* has already been registered */ |
2333 | pointer=idx+1; |
2334 | idx=nblist[pointer]; |
2335 | depth++; |
2336 | } |
2337 | if (depth>*maxnb) |
2338 | *maxnb=depth; |
2339 | /* do the registration */ |
2340 | nblist[pointer]=*len; |
2341 | nblist[*len]=v; |
2342 | nblist[*len+1]=0; |
2343 | (*len)+=2; |
2344 | /* now the other way around */ |
2345 | idx=nblist[v]; pointer=v; |
2346 | while (idx!=0) { |
2347 | /* do not have to check nblist[idx]==u due to symmetry */ |
2348 | pointer=idx+1; |
2349 | idx=nblist[pointer]; |
2350 | } |
2351 | nblist[pointer]=*len; |
2352 | nblist[*len]=u; |
2353 | nblist[*len+1]=0; |
2354 | (*len)+=2; |
2355 | } |
2356 | |
2357 | /* Here's the thing with all these limnPolyDataNeighbor* functions: |
2358 | * |
2359 | * *List is used for building up the information and called by all others |
2360 | * *Array is a great representation if all vertices have a similar number |
2361 | * of neighbors (in particular, no gross outliers) |
2362 | * The output of this is used by glyph coloring in elf. |
2363 | * *ArrayComp is a compressed representation that is best if vertices have |
2364 | * a more variable number of neighbors |
2365 | * The output of this is used by surface smoothing in limn. |
2366 | */ |
2367 | |
2368 | /* Mallocs *nblist and fills it with a linked list that contains all neighbors |
2369 | * of all n vertices in the given limnPolyData. The format is as follows: |
2370 | * For v<n, (*nblist)[v] is an index i (i>=n) into *nblist, or 0 if vertex v |
2371 | * does not have any neighbors. |
2372 | * For an index i obtained this way, (*nblist)[i] is a neighbor of v, |
2373 | * (*nblist)[i+1] is the index of the next list element (or 0). |
2374 | * If non-NULL, *len is set to the required size of *nblist - the initial malloc |
2375 | * makes a conservative guess and you may want to realloc the result to *len |
2376 | * bytes in order to free memory that ended up unused |
2377 | * If non-NULL, *m is set to the maximum number of neighbors (over all vertices) |
2378 | * Return value is 0 upon success, -1 upon error. Biff is used for errors. |
2379 | */ |
2380 | int |
2381 | limnPolyDataNeighborList(unsigned int **nblist, size_t *len, |
2382 | unsigned int *maxnb, const limnPolyData *pld) { |
2383 | static const char me[]="limnPolyDataNeighborList"; |
2384 | unsigned int i, j, m, estimate=0, *indx; |
2385 | size_t last; |
2386 | /* estimate the maximum number of neighborhood relations */ |
2387 | for (i=0; i<pld->primNum; i++) { |
2388 | switch (pld->type[i]) { |
2389 | case limnPrimitiveTriangles: |
2390 | case limnPrimitiveQuads: |
2391 | estimate+=pld->icnt[i]*2; |
2392 | break; |
2393 | case limnPrimitiveTriangleStrip: |
2394 | case limnPrimitiveTriangleFan: |
2395 | estimate+=4*(pld->icnt[i]-2)+2; |
2396 | break; |
2397 | case limnPrimitiveLineStrip: |
2398 | estimate+=2*(pld->icnt[i]-1); |
2399 | break; |
2400 | case limnPrimitiveLines: |
2401 | estimate+=pld->icnt[i]; |
2402 | break; |
2403 | default: /* should be a noop; silently ignore it */ |
2404 | break; |
2405 | } |
2406 | } |
2407 | /* allocate *nblist */ |
2408 | *nblist = (unsigned int*) malloc(sizeof(unsigned int)* |
2409 | (pld->xyzwNum+2*estimate)); |
2410 | if (*nblist==NULL((void*)0)) { |
2411 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate nblist buffer", me); |
2412 | return -1; |
2413 | } |
2414 | /* populate the list */ |
2415 | memset(*nblist, 0, sizeof(unsigned int)*pld->xyzwNum)__builtin___memset_chk (*nblist, 0, sizeof(unsigned int)*pld-> xyzwNum, __builtin_object_size (*nblist, 0)); |
2416 | last=pld->xyzwNum; m=0; indx=pld->indx; |
2417 | for (i=0; i<pld->primNum; i++) { |
2418 | switch (pld->type[i]) { |
2419 | case limnPrimitiveTriangles: |
2420 | for (j=0; j<pld->icnt[i]; j+=3) { /* go through all triangles */ |
2421 | registerNeighbor(*nblist, &last, &m, indx[j], indx[j+1]); |
2422 | registerNeighbor(*nblist, &last, &m, indx[j+1], indx[j+2]); |
2423 | registerNeighbor(*nblist, &last, &m, indx[j+2], indx[j]); |
2424 | } |
2425 | break; |
2426 | case limnPrimitiveTriangleStrip: |
2427 | if (pld->icnt[i]>0) |
2428 | registerNeighbor(*nblist, &last, &m, indx[0], indx[1]); |
2429 | for (j=0; j<pld->icnt[i]-2; j++) { |
2430 | registerNeighbor(*nblist, &last, &m, indx[j], indx[j+2]); |
2431 | registerNeighbor(*nblist, &last, &m, indx[j+1], indx[j+2]); |
2432 | } |
2433 | break; |
2434 | case limnPrimitiveTriangleFan: |
2435 | if (pld->icnt[i]>0) |
2436 | registerNeighbor(*nblist, &last, &m, indx[0], indx[1]); |
2437 | for (j=0; j<pld->icnt[i]-2; j++) { |
2438 | registerNeighbor(*nblist, &last, &m, indx[0], indx[j+2]); |
2439 | registerNeighbor(*nblist, &last, &m, indx[j+1], indx[j+2]); |
2440 | } |
2441 | break; |
2442 | case limnPrimitiveQuads: |
2443 | for (j=0; j<pld->icnt[i]; j+=4) { /* go through all quads */ |
2444 | registerNeighbor(*nblist, &last, &m, indx[j], indx[j+1]); |
2445 | registerNeighbor(*nblist, &last, &m, indx[j+1], indx[j+2]); |
2446 | registerNeighbor(*nblist, &last, &m, indx[j+2], indx[j+3]); |
2447 | registerNeighbor(*nblist, &last, &m, indx[j+3], indx[j]); |
2448 | } |
2449 | break; |
2450 | case limnPrimitiveLineStrip: |
2451 | for (j=0; j<pld->icnt[i]-1; j++) { |
2452 | registerNeighbor(*nblist, &last, &m, indx[j], indx[j+1]); |
2453 | } |
2454 | break; |
2455 | case limnPrimitiveLines: |
2456 | for (j=0; j<pld->icnt[i]; j+=2) { |
2457 | registerNeighbor(*nblist, &last, &m, indx[j], indx[j+1]); |
2458 | } |
2459 | break; |
2460 | default: /* should be a noop; silently ignore it */ |
2461 | break; |
2462 | } |
2463 | indx+=pld->icnt[i]; |
2464 | } |
2465 | if (len!=NULL((void*)0)) *len=last*sizeof(unsigned int); |
2466 | if (maxnb!=NULL((void*)0)) *maxnb=m; |
2467 | return 0; |
2468 | } |
2469 | |
2470 | /* Over the set of all n vertices in a given limnPolyData, finds the |
2471 | * maximum number m of neighbors. Sets *neighbors to a malloc'ed block |
2472 | * of (n*m) indices and lists the neighbors of vertex v at position |
2473 | * (v*m) of the list, padded with -1s. |
2474 | * *maxnb will be set to m (and is assumed to be non-NULL!) |
2475 | * Returns -1 and adds a biff error if there was a problem allocating memory. |
2476 | */ |
2477 | int |
2478 | limnPolyDataNeighborArray(int **neighbors, unsigned int *maxnb, |
2479 | const limnPolyData *pld) { |
2480 | static const char me[]="limnPolyDataNeighborArray"; |
2481 | unsigned int i, *nblist, m; |
2482 | /* get the neighbors as a linked list */ |
2483 | if (-1==limnPolyDataNeighborList(&nblist, NULL((void*)0), &m, pld)) { |
2484 | return -1; |
2485 | } |
2486 | /* convert the result into an array */ |
2487 | *neighbors = (int *) malloc(sizeof(int)*m*pld->xyzwNum); |
2488 | if (NULL((void*)0)==*neighbors) { |
2489 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate neighbors buffer", me); |
2490 | free(nblist); return -1; |
2491 | } |
2492 | for (i=0; i<pld->xyzwNum; i++) { |
2493 | unsigned int aidx=0, lidx=nblist[i]; |
2494 | while (lidx!=0) { |
2495 | (*neighbors)[m*i+aidx]=nblist[lidx]; |
2496 | lidx=nblist[lidx+1]; |
2497 | aidx++; |
2498 | } |
2499 | while (aidx<m) { |
2500 | (*neighbors)[m*i+aidx]=-1; |
2501 | aidx++; |
2502 | } |
2503 | } |
2504 | *maxnb=m; |
2505 | free(nblist); |
2506 | return 0; |
2507 | } |
2508 | |
2509 | /* Returns a compressed form of the above, rather than padding with -1s. |
2510 | * *neighbors is malloc'ed to an array that holds the indices of all neighbors |
2511 | * *idx is malloc'ed to an array of length pld->xyzwNum+1; |
2512 | * (*idx)[i] will give you the position in *neighbors at which the neighbors of |
2513 | * vertex i start |
2514 | * Returns -1 and adds a biff error if there was a problem allocating memory. |
2515 | */ |
2516 | int |
2517 | limnPolyDataNeighborArrayComp(int **neighbors, int **idx, |
2518 | const limnPolyData *pld) { |
2519 | static const char me[]="limnPolyDataNeighborArrayComp"; |
2520 | unsigned int i, ct, *nblist; |
2521 | size_t len; |
2522 | airArray *mop; |
2523 | mop = airMopNew(); |
2524 | /* get the neighbors as a linked list */ |
2525 | if (-1==limnPolyDataNeighborList(&nblist, &len, NULL((void*)0), pld)) { |
2526 | return -1; |
2527 | } |
2528 | airMopAdd(mop, nblist, airFree, airMopAlways); |
2529 | /* convert the result into compressed form */ |
2530 | *neighbors = (int *) malloc(sizeof(int)*(len-pld->xyzwNum)/2); |
2531 | if (NULL((void*)0)==*neighbors) { |
2532 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate neighbors buffer", me); |
2533 | airMopError(mop); return -1; |
2534 | } |
2535 | airMopAdd(mop, neighbors, airFree, airMopOnError); |
2536 | *idx = (int *) malloc(sizeof(int)*(pld->xyzwNum+1)); |
2537 | if (NULL((void*)0)==*idx) { |
2538 | biffAddf(LIMNlimnBiffKey, "%s: couldn't allocate index buffer", me); |
2539 | airMopError(mop); return -1; |
2540 | } |
2541 | airMopAdd(mop, idx, airFree, airMopOnError); |
2542 | for (ct=i=0; i<pld->xyzwNum; i++) { |
2543 | unsigned int lidx=nblist[i]; |
2544 | (*idx)[i]=ct; |
2545 | while (lidx!=0) { |
2546 | (*neighbors)[ct]=nblist[lidx]; |
2547 | lidx=nblist[lidx+1]; |
2548 | ct++; |
2549 | } |
2550 | } |
2551 | (*idx)[pld->xyzwNum]=ct; |
2552 | airMopOkay(mop); |
2553 | return 0; |
2554 | } |