| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | |
| 8 | |
| 9 | |
| 10 | |
| 11 | |
| 12 | |
| 13 | |
| 14 | |
| 15 | |
| 16 | |
| 17 | |
| 18 | |
| 19 | |
| 20 | |
| 21 | |
| 22 | |
| 23 | |
| 24 | #include "ten.h" |
| 25 | #include "privateTen.h" |
| 26 | |
| 27 | double |
| 28 | tenBVecNonLinearFit_error(double *bb, double *ss, double *ww, int len, |
| 29 | double amp, double dec) { |
| 30 | int ii; |
| 31 | double err, tmp; |
| 32 | |
| 33 | err = 0; |
| 34 | for (ii=0; ii<len; ii++) { |
| 35 | tmp = ww[ii]*(amp*exp(-dec*bb[ii]) - ss[ii]); |
| 36 | err += tmp*tmp; |
| 37 | } |
| 38 | return err; |
| 39 | } |
| 40 | |
| 41 | void |
| 42 | tenBVecNonLinearFit_linear(double *amp, double *dec, |
| 43 | double *bb, double *ss, double *ww, int len) { |
| 44 | double x, y, wi=0, xi=0, yi=0, xiyi=0, xisq=0, det; |
| 45 | int ii; |
| 46 | |
| 47 | for (ii=0; ii<len; ii++) { |
| 48 | x = bb[ii]; |
| 49 | y = log(AIR_MAX(ss[ii], 0.01)((ss[ii]) > (0.01) ? (ss[ii]) : (0.01))); |
| 50 | xi += ww[ii]*x; |
| 51 | yi += ww[ii]*y; |
| 52 | xiyi += ww[ii]*x*y; |
| 53 | xisq += ww[ii]*x*x; |
| 54 | wi += ww[ii]; |
| 55 | } |
| 56 | det = xisq*wi - xi*xi; |
| 57 | *dec = -(wi*xiyi - xi*yi)/det; |
| 58 | *amp = exp((-xi*xiyi + xisq*yi)/det); |
| 59 | return; |
| 60 | } |
| 61 | |
| 62 | void |
| 63 | tenBVecNonLinearFit_GNstep(double *d_amp, double *d_dec, |
| 64 | double *bb, double *ss, double *ww, int len, |
| 65 | double amp, double dec) { |
| 66 | double tmp, ff, dfdx1, dfdx2, AA=0, BB=0, CC=0, JTf[2], det; |
| 67 | int ii; |
| 68 | |
| 69 | JTf[0] = JTf[1] = 0; |
| 70 | for (ii=0; ii<len; ii++) { |
| 71 | tmp = exp(-dec*bb[ii]); |
| 72 | ff = ww[ii]*(amp*tmp - ss[ii]); |
| 73 | dfdx1 = ww[ii]*tmp; |
| 74 | dfdx2 = -ww[ii]*amp*bb[ii]*tmp; |
| 75 | AA += dfdx1*dfdx1; |
| 76 | BB += dfdx1*dfdx2; |
| 77 | CC += dfdx2*dfdx2; |
| 78 | JTf[0] += dfdx1*ff; |
| 79 | JTf[1] += dfdx2*ff; |
| 80 | } |
| 81 | det = AA*CC - BB*BB; |
| 82 | *d_amp = -(CC*JTf[0] - BB*JTf[1])/det; |
| 83 | *d_dec = -(-BB*JTf[0] + AA*JTf[1])/det; |
| 84 | return; |
| 85 | } |
| 86 | |
| 87 | |
| 88 | |
| 89 | |
| 90 | |
| 91 | |
| 92 | |
| 93 | |
| 94 | |
| 95 | |
| 96 | |
| 97 | |
| 98 | |
| 99 | |
| 100 | |
| 101 | |
| 102 | int |
| 103 | tenBVecNonLinearFit(Nrrd *nout, const Nrrd *nin, |
| 104 | double *bb, double *ww, int iterMax, double eps) { |
| 105 | static const char me[]="tenBVecNonLinearFit"; |
| 106 | int map[NRRD_DIM_MAX16], vecSize, iter; |
| 107 | size_t ii, size[NRRD_DIM_MAX16], vecI, vecNum; |
| 108 | char *vec; |
| 109 | double *out, ss[AIR_STRLEN_SMALL(128+1)], amp, dec, d_amp, d_dec, error, diff, |
| 110 | (*vecLup)(const void *v, size_t I); |
| 111 | |
| 112 | if (!( nout && nin && bb && ww )) { |
| 113 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
| 114 | return 1; |
| 115 | } |
| 116 | |
| 117 | if (!( nin->dim >= 2 )) { |
| 118 | biffAddf(TENtenBiffKey, "%s: nin->dim (%d) not >= 2", me, nin->dim); |
| 119 | return 1; |
| 120 | } |
| 121 | if (!( nin->axis[0].size < AIR_STRLEN_SMALL(128+1) )) { |
| 122 | char stmp[AIR_STRLEN_SMALL(128+1)]; |
| 123 | biffAddf(TENtenBiffKey, "%s: sorry need nin->axis[0].size (%s) < %d", me, |
| 124 | airSprintSize_t(stmp, nin->axis[0].size), AIR_STRLEN_SMALL(128+1)); |
| 125 | return 1; |
| 126 | } |
| 127 | |
| 128 | |
| 129 | nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, size); |
| 130 | size[0] = 3; |
| 131 | if (nrrdMaybeAlloc_nva(nout, nrrdTypeDouble, nin->dim, size)) { |
| 132 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate output", me); |
| 133 | return 1; |
| 134 | } |
| 135 | for (ii=1; ii<nin->dim; ii++) { |
| 136 | map[ii] = ii; |
| 137 | } |
| 138 | map[0] = -1; |
| 139 | if (nrrdAxisInfoCopy(nout, nin, map, NRRD_AXIS_INFO_NONE0)) { |
| 140 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: couldn't copy axis info", me); |
| 141 | return 1; |
| 142 | } |
| 143 | |
| 144 | |
| 145 | vecSize = nin->axis[0].size*nrrdTypeSize[nin->type]; |
| 146 | vecNum = nrrdElementNumber(nin)/nin->axis[0].size; |
| 147 | vecLup = nrrdDLookup[nin->type]; |
| 148 | vec = (char*)nin->data; |
| 149 | out = (double*)nout->data; |
| 150 | for (vecI=0; vecI<vecNum; vecI++) { |
| 151 | |
| 152 | for (ii=0; ii<nin->axis[0].size; ii++) { |
| 153 | ss[ii] = vecLup(vec, ii); |
| 154 | } |
| 155 | |
| 156 | tenBVecNonLinearFit_linear(&, &dec, bb, ss, ww, nin->axis[0].size); |
| 157 | error = tenBVecNonLinearFit_error(bb, ss, ww, nin->axis[0].size, amp, dec); |
| Value stored to 'error' is never read |
| 158 | |
| 159 | if (iterMax > 0) { |
| 160 | iter = 0; |
| 161 | do { |
| 162 | iter++; |
| 163 | tenBVecNonLinearFit_GNstep(&d_amp, &d_dec, |
| 164 | bb, ss, ww, nin->axis[0].size, amp, dec); |
| 165 | amp += 0.3*d_amp; |
| 166 | dec += 0.3*d_dec; |
| 167 | diff = d_amp*d_amp + d_dec*d_dec; |
| 168 | } while (iter < iterMax && diff > eps); |
| 169 | } |
| 170 | error = tenBVecNonLinearFit_error(bb, ss, ww, nin->axis[0].size, amp, dec); |
| 171 | out[0] = amp; |
| 172 | out[1] = dec; |
| 173 | out[2] = error; |
| 174 | vec += vecSize; |
| 175 | out += 3; |
| 176 | } |
| 177 | |
| 178 | return 0; |
| 179 | } |
| 180 | |