| File: | src/nrrd/reorder.c |
| Location: | line 771, column 3 |
| Description: | Value stored to 'outnum' is never read |
| 1 | /* |
| 2 | Teem: Tools to process and visualize scientific data and images . |
| 3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
| 4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
| 5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
| 6 | |
| 7 | This library is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU Lesser General Public License |
| 9 | (LGPL) as published by the Free Software Foundation; either |
| 10 | version 2.1 of the License, or (at your option) any later version. |
| 11 | The terms of redistributing and/or modifying this software also |
| 12 | include exceptions to the LGPL that facilitate static linking. |
| 13 | |
| 14 | This library is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | Lesser General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU Lesser General Public License |
| 20 | along with this library; if not, write to Free Software Foundation, Inc., |
| 21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 22 | */ |
| 23 | |
| 24 | #include "nrrd.h" |
| 25 | #include "privateNrrd.h" |
| 26 | |
| 27 | /* |
| 28 | ******** nrrdInvertPerm() |
| 29 | ** |
| 30 | ** given an array (p) which represents a permutation of n elements, |
| 31 | ** compute the inverse permutation ip. The value of this function |
| 32 | ** is not its core functionality, but all the error checking it |
| 33 | ** provides. |
| 34 | */ |
| 35 | int |
| 36 | nrrdInvertPerm(unsigned int *invp, const unsigned int *pp, unsigned int nn) { |
| 37 | static const char me[]="nrrdInvertPerm"; |
| 38 | int problem; |
| 39 | unsigned int ii; |
| 40 | |
| 41 | if (!(invp && pp && nn > 0)) { |
| 42 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer or non-positive nn (%d)", me, nn); |
| 43 | return 1; |
| 44 | } |
| 45 | |
| 46 | /* use the given array "invp" as a temp buffer for validity checking */ |
| 47 | memset(invp, 0, nn*sizeof(unsigned int))__builtin___memset_chk (invp, 0, nn*sizeof(unsigned int), __builtin_object_size (invp, 0)); |
| 48 | for (ii=0; ii<nn; ii++) { |
| 49 | if (!( pp[ii] <= nn-1)) { |
| 50 | biffAddf(NRRDnrrdBiffKey, |
| 51 | "%s: permutation element #%d == %d out of bounds [0,%d]", |
| 52 | me, ii, pp[ii], nn-1); |
| 53 | return 1; |
| 54 | } |
| 55 | invp[pp[ii]]++; |
| 56 | } |
| 57 | /* for some reason when this code was written (revision 2700 Sun Jul |
| 58 | 3 04:18:33 2005 UTC) it was decided that all problems with the |
| 59 | permutation would be reported with a pile of error messages in |
| 60 | biff; rather than bailing at the first problem. Not clear if |
| 61 | this is a good idea. */ |
| 62 | problem = AIR_FALSE0; |
| 63 | for (ii=0; ii<nn; ii++) { |
| 64 | if (1 != invp[ii]) { |
| 65 | biffAddf(NRRDnrrdBiffKey, "%s: element #%d mapped to %d times (should be once)", |
| 66 | me, ii, invp[ii]); |
| 67 | problem = AIR_TRUE1; |
| 68 | } |
| 69 | } |
| 70 | if (problem) { |
| 71 | return 1; |
| 72 | } |
| 73 | |
| 74 | /* the skinny */ |
| 75 | for (ii=0; ii<nn; ii++) { |
| 76 | invp[pp[ii]] = ii; |
| 77 | } |
| 78 | |
| 79 | return 0; |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | ******** nrrdAxesInsert |
| 84 | ** |
| 85 | ** like reshape, but preserves axis information on old axes, and |
| 86 | ** this is only for adding a "stub" axis with length 1. All other |
| 87 | ** axis attributes are initialized as usual. |
| 88 | */ |
| 89 | int |
| 90 | nrrdAxesInsert(Nrrd *nout, const Nrrd *nin, unsigned int axis) { |
| 91 | static const char me[]="nrrdAxesInsert", func[]="axinsert"; |
| 92 | unsigned int ai; |
| 93 | |
| 94 | if (!(nout && nin)) { |
| 95 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 96 | return 1; |
| 97 | } |
| 98 | if (!( axis <= nin->dim )) { |
| 99 | biffAddf(NRRDnrrdBiffKey, "%s: given axis (%d) outside valid range [0, %d]", |
| 100 | me, axis, nin->dim); |
| 101 | return 1; |
| 102 | } |
| 103 | if (NRRD_DIM_MAX16 == nin->dim) { |
| 104 | biffAddf(NRRDnrrdBiffKey, "%s: given nrrd already at NRRD_DIM_MAX (%d)", |
| 105 | me, NRRD_DIM_MAX16); |
| 106 | return 1; |
| 107 | } |
| 108 | if (nout != nin) { |
| 109 | if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 110 | | (nrrdStateKeyValuePairsPropagate |
| 111 | ? 0 |
| 112 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15))))) { |
| 113 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 114 | return 1; |
| 115 | } |
| 116 | } |
| 117 | nout->dim = 1 + nin->dim; |
| 118 | for (ai=nin->dim; ai>axis; ai--) { |
| 119 | _nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai-1]), |
| 120 | NRRD_AXIS_INFO_NONE0); |
| 121 | } |
| 122 | /* the ONLY thing we can say about the new axis is its size */ |
| 123 | _nrrdAxisInfoInit(&(nout->axis[axis])); |
| 124 | if (!nrrdStateKindNoop) { |
| 125 | /* except maybe the kind */ |
| 126 | nout->axis[axis].kind = nrrdKindStub; |
| 127 | } |
| 128 | nout->axis[axis].size = 1; |
| 129 | if (nrrdContentSet_va(nout, func, nin, "%d", axis)) { |
| 130 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 131 | return 1; |
| 132 | } |
| 133 | /* all basic info has already been copied by nrrdCopy() above */ |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | ******** nrrdAxesPermute |
| 139 | ** |
| 140 | ** changes the scanline ordering of the data in a nrrd |
| 141 | ** |
| 142 | ** The basic means by which data is moved around is with memcpy(). |
| 143 | ** The goal is to call memcpy() as few times as possible, on memory |
| 144 | ** segments as large as possible. Currently, this is done by |
| 145 | ** detecting how many of the low-index axes are left untouched by |
| 146 | ** the permutation- this constitutes a "scanline" which can be |
| 147 | ** copied around as a unit. For permuting the y and z axes of a |
| 148 | ** matrix-x-y-z order matrix volume, this optimization produced a |
| 149 | ** factor of 5 speed up (exhaustive multi-platform tests, of course). |
| 150 | ** |
| 151 | ** The axes[] array determines the permutation of the axes. |
| 152 | ** axis[i] = j means: axis i in the output will be the input's axis j |
| 153 | ** (axis[i] answers: "what do I put here", from the standpoint of the output, |
| 154 | ** not "where do I put this", from the standpoint of the input) |
| 155 | */ |
| 156 | int |
| 157 | nrrdAxesPermute(Nrrd *nout, const Nrrd *nin, const unsigned int *axes) { |
| 158 | static const char me[]="nrrdAxesPermute", func[]="permute"; |
| 159 | char buff1[NRRD_DIM_MAX16*30], buff2[AIR_STRLEN_SMALL(128+1)]; |
| 160 | size_t idxOut, idxInA=0, /* indices for input and output scanlines */ |
| 161 | lineSize, /* size of block of memory which can be |
| 162 | moved contiguously from input to output, |
| 163 | thought of as a "scanline" */ |
| 164 | numLines, /* how many "scanlines" there are to permute */ |
| 165 | szIn[NRRD_DIM_MAX16], *lszIn, |
| 166 | szOut[NRRD_DIM_MAX16], *lszOut, |
| 167 | cIn[NRRD_DIM_MAX16], |
| 168 | cOut[NRRD_DIM_MAX16]; |
| 169 | char *dataIn, *dataOut; |
| 170 | int axmap[NRRD_DIM_MAX16]; |
| 171 | unsigned int |
| 172 | ai, /* running index along dimensions */ |
| 173 | lowPax, /* lowest axis which is "p"ermutated */ |
| 174 | ldim, /* nin->dim - lowPax */ |
| 175 | ip[NRRD_DIM_MAX16+1], /* inverse of permutation in "axes" */ |
| 176 | laxes[NRRD_DIM_MAX16+1]; /* copy of axes[], but shifted down by lowPax |
| 177 | elements, to remove i such that i == axes[i] */ |
| 178 | airArray *mop; |
| 179 | |
| 180 | mop = airMopNew(); |
| 181 | if (!(nin && nout && axes)) { |
| 182 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 183 | airMopError(mop); return 1; |
| 184 | } |
| 185 | /* we don't actually need ip[], computing it is for error checking */ |
| 186 | if (nrrdInvertPerm(ip, axes, nin->dim)) { |
| 187 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't compute axis permutation inverse", me); |
| 188 | airMopError(mop); return 1; |
| 189 | } |
| 190 | /* this shouldn't actually be necessary .. */ |
| 191 | if (!nrrdElementSize(nin)) { |
| 192 | biffAddf(NRRDnrrdBiffKey, "%s: nrrd reports zero element size!", me); |
| 193 | airMopError(mop); return 1; |
| 194 | } |
| 195 | |
| 196 | for (ai=0; ai<nin->dim && axes[ai] == ai; ai++) |
| 197 | ; |
| 198 | lowPax = ai; |
| 199 | |
| 200 | /* allocate output by initial copy */ |
| 201 | if (nout != nin) { |
| 202 | if (nrrdCopy(nout, nin)) { |
| 203 | biffAddf(NRRDnrrdBiffKey, "%s: trouble copying input", me); |
| 204 | airMopError(mop); return 1; |
| 205 | } |
| 206 | dataIn = (char*)nin->data; |
| 207 | } else { |
| 208 | dataIn = (char*)calloc(nrrdElementNumber(nin), nrrdElementSize(nin)); |
| 209 | if (!dataIn) { |
| 210 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't create local copy of data", me); |
| 211 | airMopError(mop); return 1; |
| 212 | } |
| 213 | airMopAdd(mop, dataIn, airFree, airMopAlways); |
| 214 | memcpy(dataIn, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin))__builtin___memcpy_chk (dataIn, nin->data, nrrdElementNumber (nin)*nrrdElementSize(nin), __builtin_object_size (dataIn, 0) ); |
| 215 | } |
| 216 | if (lowPax < nin->dim) { |
| 217 | /* if lowPax == nin->dim, then we were given the identity permutation, so |
| 218 | there's nothing to do other than the copy already done. Otherwise, |
| 219 | here we are (actually, lowPax < nin->dim-1) */ |
| 220 | for (ai=0; ai<nin->dim; ai++) { |
| 221 | axmap[ai] = AIR_INT(axes[ai])((int)(axes[ai])); |
| 222 | } |
| 223 | nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, szIn); |
| 224 | if (nrrdAxisInfoCopy(nout, nin, axmap, NRRD_AXIS_INFO_NONE0)) { |
| 225 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 226 | airMopError(mop); return 1; |
| 227 | } |
| 228 | nrrdAxisInfoGet_nva(nout, nrrdAxisInfoSize, szOut); |
| 229 | /* the skinny */ |
| 230 | lineSize = 1; |
| 231 | for (ai=0; ai<lowPax; ai++) { |
| 232 | lineSize *= szIn[ai]; |
| 233 | } |
| 234 | numLines = nrrdElementNumber(nin)/lineSize; |
| 235 | lineSize *= nrrdElementSize(nin); |
| 236 | lszIn = szIn + lowPax; |
| 237 | lszOut = szOut + lowPax; |
| 238 | ldim = nin->dim - lowPax; |
| 239 | memset(laxes, 0, sizeof(laxes))__builtin___memset_chk (laxes, 0, sizeof(laxes), __builtin_object_size (laxes, 0)); |
| 240 | for (ai=0; ai<ldim; ai++) { |
| 241 | laxes[ai] = axes[ai+lowPax]-lowPax; |
| 242 | } |
| 243 | dataOut = AIR_CAST(char *, nout->data)((char *)(nout->data)); |
| 244 | memset(cIn, 0, sizeof(cIn))__builtin___memset_chk (cIn, 0, sizeof(cIn), __builtin_object_size (cIn, 0)); |
| 245 | memset(cOut, 0, sizeof(cOut))__builtin___memset_chk (cOut, 0, sizeof(cOut), __builtin_object_size (cOut, 0)); |
| 246 | for (idxOut=0; idxOut<numLines; idxOut++) { |
| 247 | /* in our representation of the coordinates of the start of the |
| 248 | scanlines that we're copying, we are not even storing all the |
| 249 | zeros in the coordinates prior to lowPax, and when we go to |
| 250 | a linear index for the memcpy(), we multiply by lineSize */ |
| 251 | for (ai=0; ai<ldim; ai++) { |
| 252 | cIn[laxes[ai]] = cOut[ai]; |
| 253 | } |
| 254 | NRRD_INDEX_GEN(idxInA, cIn, lszIn, ldim){ unsigned int ddd = (ldim); (idxInA) = 0; while (ddd) { ddd-- ; (idxInA) = (cIn)[ddd] + (lszIn)[ddd]*(idxInA); } }; |
| 255 | memcpy(dataOut + idxOut*lineSize, dataIn + idxInA*lineSize, lineSize)__builtin___memcpy_chk (dataOut + idxOut*lineSize, dataIn + idxInA *lineSize, lineSize, __builtin_object_size (dataOut + idxOut* lineSize, 0)); |
| 256 | NRRD_COORD_INCR(cOut, lszOut, ldim, 0)if ((0) < (ldim)) { (cOut)[(0)]++; { unsigned int ddd; for (ddd=0; ddd+1 < ((ldim)-(0)) && ((cOut)+(0))[ddd] >= ((lszOut)+(0))[ddd]; ddd++) { ((cOut)+(0))[ddd] = 0; ( (cOut)+(0))[ddd+1]++; } if ((ldim)-(0)) { ((cOut)+(0))[((ldim )-(0))-1] = ((((cOut)+(0))[((ldim)-(0))-1]) < (((lszOut)+( 0))[((ldim)-(0))-1]-1) ? (((cOut)+(0))[((ldim)-(0))-1]) : ((( lszOut)+(0))[((ldim)-(0))-1]-1)); } }; }; |
| 257 | } |
| 258 | /* set content */ |
| 259 | strcpy(buff1, "")__builtin___strcpy_chk (buff1, "", __builtin_object_size (buff1 , 2 > 1 ? 1 : 0)); |
| 260 | for (ai=0; ai<nin->dim; ai++) { |
| 261 | sprintf(buff2, "%s%d", (ai ? "," : ""), axes[ai])__builtin___sprintf_chk (buff2, 0, __builtin_object_size (buff2 , 2 > 1 ? 1 : 0), "%s%d", (ai ? "," : ""), axes[ai]); |
| 262 | strcat(buff1, buff2)__builtin___strcat_chk (buff1, buff2, __builtin_object_size ( buff1, 2 > 1 ? 1 : 0)); |
| 263 | } |
| 264 | if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) { |
| 265 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 266 | airMopError(mop); return 1; |
| 267 | } |
| 268 | if (nout != nin) { |
| 269 | if (nrrdBasicInfoCopy(nout, nin, |
| 270 | NRRD_BASIC_INFO_DATA_BIT(1<< 1) |
| 271 | | NRRD_BASIC_INFO_TYPE_BIT(1<< 2) |
| 272 | | NRRD_BASIC_INFO_BLOCKSIZE_BIT(1<< 3) |
| 273 | | NRRD_BASIC_INFO_DIMENSION_BIT(1<< 4) |
| 274 | | NRRD_BASIC_INFO_CONTENT_BIT(1<< 5) |
| 275 | | NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 276 | | (nrrdStateKeyValuePairsPropagate |
| 277 | ? 0 |
| 278 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15)))) { |
| 279 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 280 | airMopError(mop); return 1; |
| 281 | } |
| 282 | } |
| 283 | } |
| 284 | airMopOkay(mop); |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | ******** nrrdShuffle |
| 290 | ** |
| 291 | ** rearranges hyperslices of a nrrd along a given axis according to |
| 292 | ** given permutation. This could be used to on a 4D array, |
| 293 | ** representing a 3D volume of vectors, to re-order the vector |
| 294 | ** components. |
| 295 | ** |
| 296 | ** the given permutation array must allocated for at least as long as |
| 297 | ** the input nrrd along the chosen axis. perm[j] = i means that the |
| 298 | ** value at position j in the _new_ array should come from position i |
| 299 | ** in the _old_array. The standpoint is from the new, looking at |
| 300 | ** where to find the values amid the old array (perm answers "what do |
| 301 | ** I put here", not "where do I put this"). This allows multiple |
| 302 | ** positions in the new array to copy from the same old position, and |
| 303 | ** insures that there is an source for all positions along the new |
| 304 | ** array. |
| 305 | */ |
| 306 | int |
| 307 | nrrdShuffle(Nrrd *nout, const Nrrd *nin, unsigned int axis, |
| 308 | const size_t *perm) { |
| 309 | static const char me[]="nrrdShuffle", func[]="shuffle"; |
| 310 | char buff2[AIR_STRLEN_SMALL(128+1)]; |
| 311 | /* Sun Feb 8 13:13:58 CST 2009: There was a memory bug here caused |
| 312 | by using the same buff1[NRRD_DIM_MAX*30] declaration that had |
| 313 | worked fine for nrrdAxesPermute and nrrdReshape, but does NOT |
| 314 | work here because now samples along an axes are re-ordered, not |
| 315 | axes, so its often not allocated for long enough to hold the |
| 316 | string that's printed to it. Ideally there'd be another argument |
| 317 | that says whether to document the shuffle in the content string, |
| 318 | which would mean an API change. Or, we can use a secret |
| 319 | heuristic (or maybe later a nrrdState variable) for determining |
| 320 | when an axis is short enough to make documenting the shuffle |
| 321 | interesting. This is useful since functions like nrrdFlip() |
| 322 | probably do *not* need the shuffle (the sample reversal) to be |
| 323 | documented for long axes */ |
| 324 | #define LONGEST_INTERESTING_AXIS 42 |
| 325 | char buff1[LONGEST_INTERESTING_AXIS*30]; |
| 326 | unsigned int ai, ldim, len; |
| 327 | size_t idxInB=0, idxOut, lineSize, numLines, size[NRRD_DIM_MAX16], *lsize, |
| 328 | cIn[NRRD_DIM_MAX16+1], cOut[NRRD_DIM_MAX16+1]; |
| 329 | char *dataIn, *dataOut; |
| 330 | |
| 331 | if (!(nin && nout && perm)) { |
| 332 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 333 | return 1; |
| 334 | } |
| 335 | if (nout == nin) { |
| 336 | biffAddf(NRRDnrrdBiffKey, "%s: nout==nin disallowed", me); |
| 337 | return 1; |
| 338 | } |
| 339 | if (!( axis < nin->dim )) { |
| 340 | biffAddf(NRRDnrrdBiffKey, "%s: axis %d outside valid range [0,%d]", |
| 341 | me, axis, nin->dim-1); |
| 342 | return 1; |
| 343 | } |
| 344 | len = AIR_CAST(unsigned int, nin->axis[axis].size)((unsigned int)(nin->axis[axis].size)); |
| 345 | for (ai=0; ai<len; ai++) { |
| 346 | if (!( perm[ai] < len )) { |
| 347 | char stmp[AIR_STRLEN_SMALL(128+1)]; |
| 348 | biffAddf(NRRDnrrdBiffKey, "%s: perm[%d] (%s) outside valid range [0,%d]", me, ai, |
| 349 | airSprintSize_t(stmp, perm[ai]), len-1); |
| 350 | return 1; |
| 351 | } |
| 352 | } |
| 353 | /* this shouldn't actually be necessary .. */ |
| 354 | if (!nrrdElementSize(nin)) { |
| 355 | biffAddf(NRRDnrrdBiffKey, "%s: nrrd reports zero element size!", me); |
| 356 | return 1; |
| 357 | } |
| 358 | /* set information in new volume */ |
| 359 | nout->blockSize = nin->blockSize; |
| 360 | nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, size); |
| 361 | if (nrrdMaybeAlloc_nva(nout, nin->type, nin->dim, size)) { |
| 362 | biffAddf(NRRDnrrdBiffKey, "%s: failed to allocate output", me); |
| 363 | return 1; |
| 364 | } |
| 365 | if (nrrdAxisInfoCopy(nout, nin, NULL((void*)0), NRRD_AXIS_INFO_NONE0)) { |
| 366 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 367 | return 1; |
| 368 | } |
| 369 | /* the min and max along the shuffled axis are now meaningless */ |
| 370 | nout->axis[axis].min = nout->axis[axis].max = AIR_NAN(airFloatQNaN.f); |
| 371 | /* do the safe thing first */ |
| 372 | nout->axis[axis].kind = _nrrdKindAltered(nin->axis[axis].kind, AIR_FALSE0); |
| 373 | /* try cleverness */ |
| 374 | if (!nrrdStateKindNoop) { |
| 375 | if (0 == nrrdKindSize(nin->axis[axis].kind) |
| 376 | || nrrdKindStub == nin->axis[axis].kind |
| 377 | || nrrdKindScalar == nin->axis[axis].kind |
| 378 | || nrrdKind2Vector == nin->axis[axis].kind |
| 379 | || nrrdKind3Color == nin->axis[axis].kind |
| 380 | || nrrdKind4Color == nin->axis[axis].kind |
| 381 | || nrrdKind3Vector == nin->axis[axis].kind |
| 382 | || nrrdKind3Gradient == nin->axis[axis].kind |
| 383 | || nrrdKind3Normal == nin->axis[axis].kind |
| 384 | || nrrdKind4Vector == nin->axis[axis].kind) { |
| 385 | /* these kinds have no intrinsic ordering */ |
| 386 | nout->axis[axis].kind = nin->axis[axis].kind; |
| 387 | } |
| 388 | } |
| 389 | /* the skinny */ |
| 390 | lineSize = 1; |
| 391 | for (ai=0; ai<axis; ai++) { |
| 392 | lineSize *= nin->axis[ai].size; |
| 393 | } |
| 394 | numLines = nrrdElementNumber(nin)/lineSize; |
| 395 | lineSize *= nrrdElementSize(nin); |
| 396 | lsize = size + axis; |
| 397 | ldim = nin->dim - axis; |
| 398 | dataIn = AIR_CAST(char *, nin->data)((char *)(nin->data)); |
| 399 | dataOut = AIR_CAST(char *, nout->data)((char *)(nout->data)); |
| 400 | memset(cIn, 0, sizeof(cIn))__builtin___memset_chk (cIn, 0, sizeof(cIn), __builtin_object_size (cIn, 0)); |
| 401 | memset(cOut, 0, sizeof(cOut))__builtin___memset_chk (cOut, 0, sizeof(cOut), __builtin_object_size (cOut, 0)); |
| 402 | for (idxOut=0; idxOut<numLines; idxOut++) { |
| 403 | memcpy(cIn, cOut, sizeof(cIn))__builtin___memcpy_chk (cIn, cOut, sizeof(cIn), __builtin_object_size (cIn, 0)); |
| 404 | cIn[0] = perm[cOut[0]]; |
| 405 | NRRD_INDEX_GEN(idxInB, cIn, lsize, ldim){ unsigned int ddd = (ldim); (idxInB) = 0; while (ddd) { ddd-- ; (idxInB) = (cIn)[ddd] + (lsize)[ddd]*(idxInB); } }; |
| 406 | NRRD_INDEX_GEN(idxOut, cOut, lsize, ldim){ unsigned int ddd = (ldim); (idxOut) = 0; while (ddd) { ddd-- ; (idxOut) = (cOut)[ddd] + (lsize)[ddd]*(idxOut); } }; |
| 407 | memcpy(dataOut + idxOut*lineSize, dataIn + idxInB*lineSize, lineSize)__builtin___memcpy_chk (dataOut + idxOut*lineSize, dataIn + idxInB *lineSize, lineSize, __builtin_object_size (dataOut + idxOut* lineSize, 0)); |
| 408 | NRRD_COORD_INCR(cOut, lsize, ldim, 0)if ((0) < (ldim)) { (cOut)[(0)]++; { unsigned int ddd; for (ddd=0; ddd+1 < ((ldim)-(0)) && ((cOut)+(0))[ddd] >= ((lsize)+(0))[ddd]; ddd++) { ((cOut)+(0))[ddd] = 0; (( cOut)+(0))[ddd+1]++; } if ((ldim)-(0)) { ((cOut)+(0))[((ldim) -(0))-1] = ((((cOut)+(0))[((ldim)-(0))-1]) < (((lsize)+(0) )[((ldim)-(0))-1]-1) ? (((cOut)+(0))[((ldim)-(0))-1]) : (((lsize )+(0))[((ldim)-(0))-1]-1)); } }; }; |
| 409 | } |
| 410 | /* Set content. The LONGEST_INTERESTING_AXIS hack avoids the |
| 411 | previous array out-of-bounds bug */ |
| 412 | if (len <= LONGEST_INTERESTING_AXIS) { |
| 413 | strcpy(buff1, "")__builtin___strcpy_chk (buff1, "", __builtin_object_size (buff1 , 2 > 1 ? 1 : 0)); |
| 414 | for (ai=0; ai<len; ai++) { |
| 415 | char stmp[AIR_STRLEN_SMALL(128+1)]; |
| 416 | sprintf(buff2, "%s%s", (ai ? "," : ""), airSprintSize_t(stmp, perm[ai]))__builtin___sprintf_chk (buff2, 0, __builtin_object_size (buff2 , 2 > 1 ? 1 : 0), "%s%s", (ai ? "," : ""), airSprintSize_t (stmp, perm[ai])); |
| 417 | strcat(buff1, buff2)__builtin___strcat_chk (buff1, buff2, __builtin_object_size ( buff1, 2 > 1 ? 1 : 0)); |
| 418 | } |
| 419 | if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) { |
| 420 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 421 | return 1; |
| 422 | } |
| 423 | } else { |
| 424 | if (nrrdContentSet_va(nout, func, nin, "")) { |
| 425 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 426 | return 1; |
| 427 | } |
| 428 | } |
| 429 | if (nrrdBasicInfoCopy(nout, nin, |
| 430 | NRRD_BASIC_INFO_DATA_BIT(1<< 1) |
| 431 | | NRRD_BASIC_INFO_TYPE_BIT(1<< 2) |
| 432 | | NRRD_BASIC_INFO_BLOCKSIZE_BIT(1<< 3) |
| 433 | | NRRD_BASIC_INFO_DIMENSION_BIT(1<< 4) |
| 434 | | NRRD_BASIC_INFO_CONTENT_BIT(1<< 5) |
| 435 | | NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 436 | | (nrrdStateKeyValuePairsPropagate |
| 437 | ? 0 |
| 438 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15)))) { |
| 439 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 440 | return 1; |
| 441 | } |
| 442 | |
| 443 | return 0; |
| 444 | #undef LONGEST_INTERESTING_AXIS |
| 445 | } |
| 446 | |
| 447 | /* ---- BEGIN non-NrrdIO */ |
| 448 | |
| 449 | |
| 450 | /* |
| 451 | ******** nrrdAxesSwap() |
| 452 | ** |
| 453 | ** for when you just want to switch the order of two axes, without |
| 454 | ** going through the trouble of creating the permutation array |
| 455 | ** needed to call nrrdAxesPermute() |
| 456 | */ |
| 457 | int |
| 458 | nrrdAxesSwap(Nrrd *nout, const Nrrd *nin, unsigned int ax1, unsigned int ax2) { |
| 459 | static const char me[]="nrrdAxesSwap", func[]="swap"; |
| 460 | unsigned int ai, axmap[NRRD_DIM_MAX16]; |
| 461 | |
| 462 | if (!(nout && nin)) { |
| 463 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 464 | return 1; |
| 465 | } |
| 466 | if (!( ax1 < nin->dim && ax2 < nin->dim )) { |
| 467 | biffAddf(NRRDnrrdBiffKey, "%s: ax1 (%d) or ax2 (%d) out of bounds [0,%d]", |
| 468 | me, ax1, ax2, nin->dim-1); |
| 469 | return 1; |
| 470 | } |
| 471 | |
| 472 | for (ai=0; ai<nin->dim; ai++) { |
| 473 | axmap[ai] = ai; |
| 474 | } |
| 475 | axmap[ax2] = ax1; |
| 476 | axmap[ax1] = ax2; |
| 477 | if (nrrdAxesPermute(nout, nin, axmap) |
| 478 | || nrrdContentSet_va(nout, func, nin, "%d,%d", ax1, ax2)) { |
| 479 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 480 | return 1; |
| 481 | } |
| 482 | /* basic info already copied by nrrdAxesPermute */ |
| 483 | return 0; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | ******** nrrdFlip() |
| 488 | ** |
| 489 | ** reverse the order of slices along the given axis. |
| 490 | ** Actually, just a wrapper around nrrdShuffle() (with some |
| 491 | ** extra setting of axis info) |
| 492 | */ |
| 493 | int |
| 494 | nrrdFlip(Nrrd *nout, const Nrrd *nin, unsigned int axis) { |
| 495 | static const char me[]="nrrdFlip", func[]="flip"; |
| 496 | size_t *perm, si; |
| 497 | airArray *mop; |
| 498 | unsigned int axisIdx; |
| 499 | |
| 500 | mop = airMopNew(); |
| 501 | if (!(nout && nin)) { |
| 502 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 503 | airMopError(mop); return 1; |
| 504 | } |
| 505 | if (!( axis < nin->dim )) { |
| 506 | biffAddf(NRRDnrrdBiffKey, "%s: given axis (%d) is outside valid range ([0,%d])", |
| 507 | me, axis, nin->dim-1); |
| 508 | airMopError(mop); return 1; |
| 509 | } |
| 510 | if (!(perm = (size_t*)calloc(nin->axis[axis].size, sizeof(size_t)))) { |
| 511 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't alloc permutation array", me); |
| 512 | airMopError(mop); return 1; |
| 513 | } |
| 514 | airMopAdd(mop, perm, airFree, airMopAlways); |
| 515 | for (si=0; si<nin->axis[axis].size; si++) { |
| 516 | perm[si] = nin->axis[axis].size-1-si; |
| 517 | } |
| 518 | /* nrrdBasicInfoCopy called by nrrdShuffle() */ |
| 519 | if (nrrdShuffle(nout, nin, axis, perm) |
| 520 | || nrrdContentSet_va(nout, func, nin, "%d", axis)) { |
| 521 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 522 | airMopError(mop); return 1; |
| 523 | } |
| 524 | _nrrdAxisInfoCopy(&(nout->axis[axis]), &(nin->axis[axis]), |
| 525 | NRRD_AXIS_INFO_SIZE_BIT(1<< 1) |
| 526 | | NRRD_AXIS_INFO_KIND_BIT(1<< 8)); |
| 527 | /* HEY: (Tue Jan 18 00:28:26 EST 2005) there's a basic question to |
| 528 | be answered here: do we want to keep the "location" of the |
| 529 | samples fixed, while changing their ordering, or do want to flip |
| 530 | the location of the samples? In the former, the position |
| 531 | information has to be flipped to cancel the flipping of the the |
| 532 | sample order, so that samples maintain location. In the latter, |
| 533 | the position information is copied verbatim from the original. */ |
| 534 | /* (Tue Sep 13 09:59:12 EDT 2005) answer: we keep the "location" of |
| 535 | the samples fixed, while changing their ordering. This is the |
| 536 | low-level thing to do, so for a nrrd function, its the right thing |
| 537 | to do. You don't need a nrrd function to simply manipulate |
| 538 | per-axis meta-information */ |
| 539 | nout->axis[axis].min = nin->axis[axis].max; |
| 540 | nout->axis[axis].max = nin->axis[axis].min; |
| 541 | /* HEY: Fri Jan 14 02:53:30 EST 2005: isn't spacing supposed to be |
| 542 | the step from one sample to the next? So its a signed quantity. |
| 543 | If min and max can be flipped (so min > max), then spacing can |
| 544 | be negative, right? */ |
| 545 | nout->axis[axis].spacing = -nin->axis[axis].spacing; |
| 546 | /* HEY: Fri Jan 14 02:53:30 EST 2005: but not thickness */ |
| 547 | nout->axis[axis].thickness = nin->axis[axis].thickness; |
| 548 | /* need to set general orientation info too */ |
| 549 | for (axisIdx=0; axisIdx<NRRD_SPACE_DIM_MAX8; axisIdx++) { |
| 550 | nout->axis[axis].spaceDirection[axisIdx] = |
| 551 | -nin->axis[axis].spaceDirection[axisIdx]; |
| 552 | } |
| 553 | /* modify origin only if we flipped a spatial axis */ |
| 554 | if (AIR_EXISTS(nin->axis[axis].spaceDirection[0])(((int)(!((nin->axis[axis].spaceDirection[0]) - (nin->axis [axis].spaceDirection[0])))))) { |
| 555 | nrrdSpaceVecScaleAdd2(nout->spaceOrigin, |
| 556 | 1.0, |
| 557 | nin->spaceOrigin, |
| 558 | AIR_CAST(double, nin->axis[axis].size-1)((double)(nin->axis[axis].size-1)), |
| 559 | nin->axis[axis].spaceDirection); |
| 560 | } else { |
| 561 | nrrdSpaceVecCopy(nout->spaceOrigin, nin->spaceOrigin); |
| 562 | } |
| 563 | airMopOkay(mop); |
| 564 | return 0; |
| 565 | } |
| 566 | |
| 567 | /* |
| 568 | ** |
| 569 | ** NOTE: this seems to destroy all space/orientation info. What |
| 570 | ** should be done? |
| 571 | */ |
| 572 | int |
| 573 | nrrdJoin(Nrrd *nout, const Nrrd *const *nin, unsigned int ninNum, |
| 574 | unsigned int axis, int incrDim) { |
| 575 | static const char me[]="nrrdJoin"; |
| 576 | unsigned int ni, ai, mindim, maxdim, outdim, |
| 577 | permute[NRRD_DIM_MAX16], ipermute[NRRD_DIM_MAX16]; |
| 578 | int diffdim, axmap[NRRD_DIM_MAX16]; |
| 579 | size_t outlen, outnum, chunksize, size[NRRD_DIM_MAX16]; |
| 580 | char *dataPerm; |
| 581 | Nrrd *ntmpperm, /* axis-permuted version of output */ |
| 582 | **ninperm; |
| 583 | airArray *mop; |
| 584 | char stmp[2][AIR_STRLEN_SMALL(128+1)]; |
| 585 | |
| 586 | /* error checking */ |
| 587 | if (!(nout && nin)) { |
| 588 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 589 | return 1; |
| 590 | } |
| 591 | if (!(ninNum >= 1)) { |
| 592 | biffAddf(NRRDnrrdBiffKey, "%s: ninNum (%d) must be >= 1", me, ninNum); |
| 593 | return 1; |
| 594 | } |
| 595 | for (ni=0; ni<ninNum; ni++) { |
| 596 | if (!(nin[ni])) { |
| 597 | biffAddf(NRRDnrrdBiffKey, "%s: input nrrd #%d NULL", me, ni); |
| 598 | return 1; |
| 599 | } |
| 600 | if (nout==nin[ni]) { |
| 601 | biffAddf(NRRDnrrdBiffKey, "%s: nout==nin[%d] disallowed", me, ni); |
| 602 | return 1; |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | mop = airMopNew(); |
| 607 | ninperm = AIR_CALLOC(ninNum, Nrrd *)(Nrrd **)(calloc((ninNum), sizeof(Nrrd *))); |
| 608 | if (!(ninperm)) { |
| 609 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't calloc() temp nrrd array", me); |
| 610 | airMopError(mop); return 1; |
| 611 | } |
| 612 | airMopAdd(mop, ninperm, airFree, airMopAlways); |
| 613 | |
| 614 | maxdim = mindim = nin[0]->dim; |
| 615 | for (ni=0; ni<ninNum; ni++) { |
| 616 | mindim = AIR_MIN(mindim, nin[ni]->dim)((mindim) < (nin[ni]->dim) ? (mindim) : (nin[ni]->dim )); |
| 617 | maxdim = AIR_MAX(maxdim, nin[ni]->dim)((maxdim) > (nin[ni]->dim) ? (maxdim) : (nin[ni]->dim )); |
| 618 | } |
| 619 | diffdim = maxdim - mindim; |
| 620 | if (diffdim > 1) { |
| 621 | biffAddf(NRRDnrrdBiffKey, "%s: will only reshape up one dimension (not %d)", |
| 622 | me, diffdim); |
| 623 | airMopError(mop); return 1; |
| 624 | } |
| 625 | if (axis > maxdim) { |
| 626 | biffAddf(NRRDnrrdBiffKey, "%s: can't join along axis %d with highest input dim = %d", |
| 627 | me, axis, maxdim); |
| 628 | airMopError(mop); return 1; |
| 629 | } |
| 630 | |
| 631 | /* figure out dimension of output (outdim) */ |
| 632 | if (diffdim) { |
| 633 | /* case A: (example) 2D slices and 3D slabs are being joined |
| 634 | together to make a bigger 3D volume */ |
| 635 | outdim = maxdim; |
| 636 | } else { |
| 637 | /* diffdim == 0 */ |
| 638 | if (axis == maxdim) { |
| 639 | /* case B: this is like the old "stitch": a bunch of equal-sized |
| 640 | slices of dimension N are being stacked together to make an |
| 641 | N+1 dimensional volume, which is essentially just the result of |
| 642 | concatenating the memory of individual inputs */ |
| 643 | outdim = maxdim + 1; |
| 644 | } else { |
| 645 | /* case C: axis < maxdim; maxdim == mindim */ |
| 646 | /* case C1 (!incrDim): a bunch of N-D slabs are being joined |
| 647 | together to make a bigger N-D volume. The axis along which |
| 648 | they are being joined could be any of existing axes (from 0 |
| 649 | to maxdim-1) */ |
| 650 | /* case C2 (incrDim): this is also a "stitch", but the new axis |
| 651 | created by the stitching is inserted into the existing |
| 652 | axes. (ex: stitch 3 PGMs (R, G, B) together into a PPM (with |
| 653 | color on axis zero) */ |
| 654 | outdim = maxdim + !!incrDim; |
| 655 | } |
| 656 | } |
| 657 | if (outdim > NRRD_DIM_MAX16) { |
| 658 | biffAddf(NRRDnrrdBiffKey, "%s: output dimension (%d) exceeds NRRD_DIM_MAX (%d)", |
| 659 | me, outdim, NRRD_DIM_MAX16); |
| 660 | airMopError(mop); return 1; |
| 661 | } |
| 662 | |
| 663 | /* do tacit reshaping, and possibly permuting, as needed */ |
| 664 | for (ai=0; ai<outdim; ai++) { |
| 665 | permute[ai] = (ai < axis |
| 666 | ? ai |
| 667 | : (ai < outdim-1 |
| 668 | ? ai + 1 |
| 669 | : axis)); |
| 670 | /* fprintf(stderr, "!%s: 1st permute[%d] = %d\n", me, ai, permute[ai]); */ |
| 671 | } |
| 672 | for (ni=0; ni<ninNum; ni++) { |
| 673 | ninperm[ni] = nrrdNew(); |
| 674 | diffdim = outdim - nin[ni]->dim; |
| 675 | /* fprintf(stderr, "!%s: ni = %d ---> diffdim = %d\n", me, ni, diffdim); */ |
| 676 | if (diffdim) { |
| 677 | /* we do a tacit reshaping, which actually includes |
| 678 | a tacit permuting, so we don't have to call permute |
| 679 | on the parts that don't actually need it */ |
| 680 | /* NB: we register nrrdNix, not nrrdNuke */ |
| 681 | /* fprintf(stderr, "!%s: %d: tacit reshape/permute\n", me, ni); */ |
| 682 | airMopAdd(mop, ninperm[ni], (airMopper)nrrdNix, airMopAlways); |
| 683 | nrrdAxisInfoGet_nva(nin[ni], nrrdAxisInfoSize, size); |
| 684 | for (ai=nin[ni]->dim-1; ai>=mindim+1; ai--) { |
| 685 | size[ai] = size[ai-1]; |
| 686 | } |
| 687 | size[mindim] = 1; |
| 688 | /* this may be done needlessly often */ |
| 689 | for (ai=0; ai<=nin[ni]->dim; ai++) { |
| 690 | if (ai < mindim) { |
| 691 | axmap[ai] = ai; |
| 692 | } else if (ai > mindim) { |
| 693 | axmap[ai] = ai-1; |
| 694 | } else { |
| 695 | axmap[ai] = -1; |
| 696 | } |
| 697 | } |
| 698 | /* we don't have to actually call nrrdReshape(): we just nrrdWrap() |
| 699 | the input data with the reshaped size array */ |
| 700 | if (nrrdWrap_nva(ninperm[ni], nin[ni]->data, nin[ni]->type, |
| 701 | nin[ni]->dim+1, size)) { |
| 702 | biffAddf(NRRDnrrdBiffKey, "%s: trouble creating interm. version of nrrd %d", |
| 703 | me, ni); |
| 704 | airMopError(mop); return 1; |
| 705 | } |
| 706 | nrrdAxisInfoCopy(ninperm[ni], nin[ni], axmap, |
| 707 | (NRRD_AXIS_INFO_SIZE_BIT(1<< 1) |
| 708 | /* HEY: this is being nixed because I can't think |
| 709 | of a sane way of keeping it consistent */ |
| 710 | | NRRD_AXIS_INFO_SPACEDIRECTION_BIT(1<< 6))); |
| 711 | } else { |
| 712 | /* on this part, we permute (no need for a reshape) */ |
| 713 | airMopAdd(mop, ninperm[ni], (airMopper)nrrdNuke, airMopAlways); |
| 714 | if (nrrdAxesPermute(ninperm[ni], nin[ni], permute)) { |
| 715 | biffAddf(NRRDnrrdBiffKey, "%s: trouble permuting input part %d", me, ni); |
| 716 | airMopError(mop); return 1; |
| 717 | } |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | /* make sure all parts are compatible in type and shape, |
| 722 | determine length of final output along axis (outlen) */ |
| 723 | outlen = 0; |
| 724 | for (ni=0; ni<ninNum; ni++) { |
| 725 | if (ninperm[ni]->type != ninperm[0]->type) { |
| 726 | biffAddf(NRRDnrrdBiffKey, "%s: type (%s) of part %d unlike first's (%s)", |
| 727 | me, airEnumStr(nrrdType, ninperm[ni]->type), |
| 728 | ni, airEnumStr(nrrdType, ninperm[0]->type)); |
| 729 | airMopError(mop); return 1; |
| 730 | } |
| 731 | if (nrrdTypeBlock == ninperm[0]->type) { |
| 732 | if (ninperm[ni]->blockSize != ninperm[0]->blockSize) { |
| 733 | biffAddf(NRRDnrrdBiffKey, "%s: blockSize (%s) of part %d != first's (%s)", me, |
| 734 | airSprintSize_t(stmp[0], ninperm[ni]->blockSize), ni, |
| 735 | airSprintSize_t(stmp[1], ninperm[0]->blockSize)); |
| 736 | airMopError(mop); return 1; |
| 737 | } |
| 738 | } |
| 739 | if (!nrrdElementSize(ninperm[ni])) { |
| 740 | biffAddf(NRRDnrrdBiffKey, "%s: got wacky elements size (%s) for part %d", me, |
| 741 | airSprintSize_t(stmp[0], nrrdElementSize(ninperm[ni])), ni); |
| 742 | airMopError(mop); return 1; |
| 743 | } |
| 744 | |
| 745 | /* fprintf(stderr, "!%s: part %03d shape: ", me, ni); */ |
| 746 | for (ai=0; ai<outdim-1; ai++) { |
| 747 | /* fprintf(stderr, "%03u ", (unsigned int)ninperm[ni]->axis[ai].size);*/ |
| 748 | if (ninperm[ni]->axis[ai].size != ninperm[0]->axis[ai].size) { |
| 749 | biffAddf(NRRDnrrdBiffKey, "%s: axis %d size (%s) of part %d != first's (%s)", me, |
| 750 | ai, airSprintSize_t(stmp[0], ninperm[ni]->axis[ai].size), |
| 751 | ni, airSprintSize_t(stmp[1], ninperm[0]->axis[ai].size)); |
| 752 | airMopError(mop); return 1; |
| 753 | } |
| 754 | } |
| 755 | /* |
| 756 | fprintf(stderr, "%03u\n", (unsigned int)ninperm[ni]->axis[outdim-1].size); |
| 757 | */ |
| 758 | outlen += ninperm[ni]->axis[outdim-1].size; |
| 759 | } |
| 760 | /* fprintf(stderr, "!%s: outlen = %u\n", me, (unsigned int)outlen); */ |
| 761 | |
| 762 | /* allocate temporary nrrd and concat input into it */ |
| 763 | outnum = 1; |
| 764 | if (outdim > 1) { |
| 765 | for (ai=0; ai<outdim-1; ai++) { |
| 766 | size[ai] = ninperm[0]->axis[ai].size; |
| 767 | outnum *= size[ai]; |
| 768 | } |
| 769 | } |
| 770 | size[outdim-1] = outlen; |
| 771 | outnum *= size[outdim-1]; |
Value stored to 'outnum' is never read | |
| 772 | if (nrrdMaybeAlloc_nva(ntmpperm = nrrdNew(), ninperm[0]->type, |
| 773 | outdim, size)) { |
| 774 | biffAddf(NRRDnrrdBiffKey, "%s: trouble allocating permutation nrrd", me); |
| 775 | airMopError(mop); return 1; |
| 776 | } |
| 777 | airMopAdd(mop, ntmpperm, (airMopper)nrrdNuke, airMopAlways); |
| 778 | dataPerm = AIR_CAST(char *, ntmpperm->data)((char *)(ntmpperm->data)); |
| 779 | for (ni=0; ni<ninNum; ni++) { |
| 780 | /* here is where the actual joining happens */ |
| 781 | chunksize = nrrdElementNumber(ninperm[ni])*nrrdElementSize(ninperm[ni]); |
| 782 | memcpy(dataPerm, ninperm[ni]->data, chunksize)__builtin___memcpy_chk (dataPerm, ninperm[ni]->data, chunksize , __builtin_object_size (dataPerm, 0)); |
| 783 | dataPerm += chunksize; |
| 784 | } |
| 785 | |
| 786 | /* copy other axis-specific fields from nin[0] to ntmpperm */ |
| 787 | for (ai=0; ai<outdim-1; ai++) { |
| 788 | axmap[ai] = ai; |
| 789 | } |
| 790 | axmap[outdim-1] = -1; |
| 791 | nrrdAxisInfoCopy(ntmpperm, ninperm[0], axmap, |
| 792 | (NRRD_AXIS_INFO_NONE0 |
| 793 | /* HEY: this is being nixed because I can't think |
| 794 | of a sane way of keeping it consistent */ |
| 795 | | NRRD_AXIS_INFO_SPACEDIRECTION_BIT(1<< 6))); |
| 796 | ntmpperm->axis[outdim-1].size = outlen; |
| 797 | |
| 798 | /* do the permutation required to get output in right order */ |
| 799 | if (nrrdInvertPerm(ipermute, permute, outdim) |
| 800 | || nrrdAxesPermute(nout, ntmpperm, ipermute)) { |
| 801 | biffAddf(NRRDnrrdBiffKey, "%s: error permuting temporary nrrd", me); |
| 802 | airMopError(mop); return 1; |
| 803 | } |
| 804 | /* basic info is either already set or invalidated by joining */ |
| 805 | |
| 806 | /* HEY: set content on output! */ |
| 807 | |
| 808 | airMopOkay(mop); |
| 809 | return 0; |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | ******** nrrdAxesSplit |
| 814 | ** |
| 815 | ** like reshape, but only for splitting one axis into a fast and slow part. |
| 816 | */ |
| 817 | int |
| 818 | nrrdAxesSplit(Nrrd *nout, const Nrrd *nin, |
| 819 | unsigned int saxi, size_t sizeFast, size_t sizeSlow) { |
| 820 | static const char me[]="nrrdAxesSplit", func[]="axsplit"; |
| 821 | unsigned int ai; |
| 822 | |
| 823 | if (!(nout && nin)) { |
| 824 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 825 | return 1; |
| 826 | } |
| 827 | if (!( saxi <= nin->dim-1 )) { |
| 828 | biffAddf(NRRDnrrdBiffKey, "%s: given axis (%d) outside valid range [0, %d]", |
| 829 | me, saxi, nin->dim-1); |
| 830 | return 1; |
| 831 | } |
| 832 | if (NRRD_DIM_MAX16 == nin->dim) { |
| 833 | biffAddf(NRRDnrrdBiffKey, "%s: given nrrd already at NRRD_DIM_MAX (%d)", |
| 834 | me, NRRD_DIM_MAX16); |
| 835 | return 1; |
| 836 | } |
| 837 | if (!(sizeFast*sizeSlow == nin->axis[saxi].size)) { |
| 838 | char stmp[4][AIR_STRLEN_SMALL(128+1)]; |
| 839 | biffAddf(NRRDnrrdBiffKey, "%s: # samples along axis %d (%s) != " |
| 840 | "product of fast and slow sizes (%s * %s = %s)", me, saxi, |
| 841 | airSprintSize_t(stmp[0], nin->axis[saxi].size), |
| 842 | airSprintSize_t(stmp[1], sizeFast), |
| 843 | airSprintSize_t(stmp[2], sizeSlow), |
| 844 | airSprintSize_t(stmp[3], sizeFast*sizeSlow)); |
| 845 | return 1; |
| 846 | } |
| 847 | if (nout != nin) { |
| 848 | if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 849 | | (nrrdStateKeyValuePairsPropagate |
| 850 | ? 0 |
| 851 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15))))) { |
| 852 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 853 | return 1; |
| 854 | } |
| 855 | } |
| 856 | nout->dim = 1 + nin->dim; |
| 857 | for (ai=nin->dim-1; ai>=saxi+1; ai--) { |
| 858 | _nrrdAxisInfoCopy(&(nout->axis[ai+1]), &(nin->axis[ai]), |
| 859 | NRRD_AXIS_INFO_NONE0); |
| 860 | } |
| 861 | /* the ONLY thing we can say about the new axes are their sizes */ |
| 862 | _nrrdAxisInfoInit(&(nout->axis[saxi])); |
| 863 | _nrrdAxisInfoInit(&(nout->axis[saxi+1])); |
| 864 | nout->axis[saxi].size = sizeFast; |
| 865 | nout->axis[saxi+1].size = sizeSlow; |
| 866 | if (nrrdContentSet_va(nout, func, nin, "%d,%d,%d", |
| 867 | saxi, sizeFast, sizeSlow)) { |
| 868 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 869 | return 1; |
| 870 | } |
| 871 | /* all basic information already copied by nrrdCopy */ |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | /* |
| 876 | ******** nrrdAxesDelete |
| 877 | ** |
| 878 | ** like reshape, but preserves axis information on old axes, and |
| 879 | ** this is only for removing a "stub" axis with length 1. |
| 880 | */ |
| 881 | int |
| 882 | nrrdAxesDelete(Nrrd *nout, const Nrrd *nin, unsigned int daxi) { |
| 883 | static const char me[]="nrrdAxesDelete", func[]="axdelete"; |
| 884 | unsigned int ai; |
| 885 | |
| 886 | if (!(nout && nin)) { |
| 887 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 888 | return 1; |
| 889 | } |
| 890 | if (!( daxi < nin->dim )) { |
| 891 | biffAddf(NRRDnrrdBiffKey, "%s: given axis (%d) outside valid range [0, %d]", |
| 892 | me, daxi, nin->dim-1); |
| 893 | return 1; |
| 894 | } |
| 895 | if (1 == nin->dim) { |
| 896 | biffAddf(NRRDnrrdBiffKey, "%s: given nrrd already at lowest dimension (1)", me); |
| 897 | return 1; |
| 898 | } |
| 899 | if (1 != nin->axis[daxi].size) { |
| 900 | char stmp[AIR_STRLEN_SMALL(128+1)]; |
| 901 | biffAddf(NRRDnrrdBiffKey, "%s: size along axis %d is %s, not 1", me, daxi, |
| 902 | airSprintSize_t(stmp, nin->axis[daxi].size)); |
| 903 | return 1; |
| 904 | } |
| 905 | if (nout != nin) { |
| 906 | if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 907 | | (nrrdStateKeyValuePairsPropagate |
| 908 | ? 0 |
| 909 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15))))) { |
| 910 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 911 | return 1; |
| 912 | } |
| 913 | } |
| 914 | for (ai=daxi; ai<nin->dim-1; ai++) { |
| 915 | _nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai+1]), |
| 916 | NRRD_AXIS_INFO_NONE0); |
| 917 | } |
| 918 | nout->dim = nin->dim - 1; |
| 919 | if (nrrdContentSet_va(nout, func, nin, "%d", daxi)) { |
| 920 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 921 | return 1; |
| 922 | } |
| 923 | /* all basic information already copied by nrrdCopy */ |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | ******** nrrdAxesMerge |
| 929 | ** |
| 930 | ** like reshape, but preserves axis information on old axes |
| 931 | ** merges axis ax and ax+1 into one |
| 932 | */ |
| 933 | int |
| 934 | nrrdAxesMerge(Nrrd *nout, const Nrrd *nin, unsigned int maxi) { |
| 935 | static const char me[]="nrrdAxesMerge", func[]="axmerge"; |
| 936 | unsigned int ai; |
| 937 | size_t sizeFast, sizeSlow; |
| 938 | |
| 939 | if (!(nout && nin)) { |
| 940 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 941 | return 1; |
| 942 | } |
| 943 | if (!( maxi < nin->dim-1 )) { |
| 944 | biffAddf(NRRDnrrdBiffKey, "%s: given axis (%d) outside valid range [0, %d]", |
| 945 | me, maxi, nin->dim-2); |
| 946 | return 1; |
| 947 | } |
| 948 | if (1 == nin->dim) { |
| 949 | biffAddf(NRRDnrrdBiffKey, "%s: given nrrd already at lowest dimension (1)", me); |
| 950 | return 1; |
| 951 | } |
| 952 | if (nout != nin) { |
| 953 | if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 954 | | (nrrdStateKeyValuePairsPropagate |
| 955 | ? 0 |
| 956 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15))))) { |
| 957 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 958 | return 1; |
| 959 | } |
| 960 | } |
| 961 | sizeFast = nin->axis[maxi].size; |
| 962 | sizeSlow = nin->axis[maxi+1].size; |
| 963 | nout->dim = nin->dim - 1; |
| 964 | for (ai=maxi+1; ai<nout->dim; ai++) { |
| 965 | _nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai+1]), |
| 966 | NRRD_AXIS_INFO_NONE0); |
| 967 | } |
| 968 | /* the ONLY thing we can say about the new axis is its size */ |
| 969 | _nrrdAxisInfoInit(&(nout->axis[maxi])); |
| 970 | nout->axis[maxi].size = sizeFast*sizeSlow; |
| 971 | if (nrrdContentSet_va(nout, func, nin, "%d", maxi)) { |
| 972 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 973 | return 1; |
| 974 | } |
| 975 | /* all basic information already copied by nrrdCopy */ |
| 976 | return 0; |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | ******** nrrdReshape_nva() |
| 981 | ** |
| 982 | */ |
| 983 | int |
| 984 | nrrdReshape_nva(Nrrd *nout, const Nrrd *nin, |
| 985 | unsigned int dim, const size_t *size) { |
| 986 | static const char me[]="nrrdReshape_nva", func[]="reshape"; |
| 987 | char buff1[NRRD_DIM_MAX16*30], buff2[AIR_STRLEN_SMALL(128+1)]; |
| 988 | size_t numOut; |
| 989 | unsigned int ai; |
| 990 | char stmp[2][AIR_STRLEN_SMALL(128+1)]; |
| 991 | |
| 992 | if (!(nout && nin && size)) { |
| 993 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 994 | return 1; |
| 995 | } |
| 996 | if (!(AIR_IN_CL(1, dim, NRRD_DIM_MAX)((1) <= (dim) && (dim) <= (16)))) { |
| 997 | biffAddf(NRRDnrrdBiffKey, "%s: given dimension (%d) outside valid range [1,%d]", |
| 998 | me, dim, NRRD_DIM_MAX16); |
| 999 | return 1; |
| 1000 | } |
| 1001 | if (_nrrdSizeCheck(size, dim, AIR_TRUE1)) { |
| 1002 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1003 | return 1; |
| 1004 | } |
| 1005 | numOut = 1; |
| 1006 | for (ai=0; ai<dim; ai++) { |
| 1007 | numOut *= size[ai]; |
| 1008 | } |
| 1009 | if (numOut != nrrdElementNumber(nin)) { |
| 1010 | biffAddf(NRRDnrrdBiffKey, "%s: new sizes product (%s) != # elements (%s)", me, |
| 1011 | airSprintSize_t(stmp[0], numOut), |
| 1012 | airSprintSize_t(stmp[1], nrrdElementNumber(nin))); |
| 1013 | return 1; |
| 1014 | } |
| 1015 | |
| 1016 | if (nout != nin) { |
| 1017 | if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 1018 | | (nrrdStateKeyValuePairsPropagate |
| 1019 | ? 0 |
| 1020 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15))))) { |
| 1021 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1022 | return 1; |
| 1023 | } |
| 1024 | } |
| 1025 | nout->dim = dim; |
| 1026 | for (ai=0; ai<dim; ai++) { |
| 1027 | /* the ONLY thing we can say about the axes is the size */ |
| 1028 | _nrrdAxisInfoInit(&(nout->axis[ai])); |
| 1029 | nout->axis[ai].size = size[ai]; |
| 1030 | } |
| 1031 | |
| 1032 | strcpy(buff1, "")__builtin___strcpy_chk (buff1, "", __builtin_object_size (buff1 , 2 > 1 ? 1 : 0)); |
| 1033 | for (ai=0; ai<dim; ai++) { |
| 1034 | sprintf(buff2, "%s%s", (ai ? "x" : ""),__builtin___sprintf_chk (buff2, 0, __builtin_object_size (buff2 , 2 > 1 ? 1 : 0), "%s%s", (ai ? "x" : ""), airSprintSize_t (stmp[0], size[ai])) |
| 1035 | airSprintSize_t(stmp[0], size[ai]))__builtin___sprintf_chk (buff2, 0, __builtin_object_size (buff2 , 2 > 1 ? 1 : 0), "%s%s", (ai ? "x" : ""), airSprintSize_t (stmp[0], size[ai])); |
| 1036 | strcat(buff1, buff2)__builtin___strcat_chk (buff1, buff2, __builtin_object_size ( buff1, 2 > 1 ? 1 : 0)); |
| 1037 | } |
| 1038 | /* basic info copied by _nrrdCopy, but probably more than we |
| 1039 | want- perhaps space dimension and origin should be nixed? */ |
| 1040 | if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) { |
| 1041 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1042 | return 1; |
| 1043 | } |
| 1044 | return 0; |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | ******** nrrdReshape_va() |
| 1049 | ** |
| 1050 | ** var-args version of nrrdReshape_nva() |
| 1051 | */ |
| 1052 | int |
| 1053 | nrrdReshape_va(Nrrd *nout, const Nrrd *nin, unsigned int dim, ...) { |
| 1054 | static const char me[]="nrrdReshape_va"; |
| 1055 | unsigned int ai; |
| 1056 | size_t size[NRRD_DIM_MAX16]; |
| 1057 | va_list ap; |
| 1058 | |
| 1059 | if (!(nout && nin)) { |
| 1060 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 1061 | return 1; |
| 1062 | } |
| 1063 | if (!(AIR_IN_CL(1, dim, NRRD_DIM_MAX)((1) <= (dim) && (dim) <= (16)))) { |
| 1064 | biffAddf(NRRDnrrdBiffKey, "%s: given dimension (%d) outside valid range [1,%d]", |
| 1065 | me, dim, NRRD_DIM_MAX16); |
| 1066 | return 1; |
| 1067 | } |
| 1068 | va_start(ap, dim)__builtin_va_start(ap, dim); |
| 1069 | for (ai=0; ai<dim; ai++) { |
| 1070 | size[ai] = va_arg(ap, size_t)__builtin_va_arg(ap, size_t); |
| 1071 | } |
| 1072 | va_end(ap)__builtin_va_end(ap); |
| 1073 | /* basic info copied (indirectly) by nrrdReshape_nva() */ |
| 1074 | if (nrrdReshape_nva(nout, nin, dim, size)) { |
| 1075 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1076 | return 1; |
| 1077 | } |
| 1078 | |
| 1079 | return 0; |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | ******** nrrdBlock() |
| 1084 | ** |
| 1085 | ** collapse the first axis (axis 0) of the nrrd into a block, making |
| 1086 | ** an output nrrd of type nrrdTypeBlock. The input type can be block. |
| 1087 | ** All information for other axes is shifted down one axis. |
| 1088 | */ |
| 1089 | int |
| 1090 | nrrdBlock(Nrrd *nout, const Nrrd *nin) { |
| 1091 | static const char me[]="nrrdBlock", func[]="block"; |
| 1092 | unsigned int ai; |
| 1093 | size_t numEl, size[NRRD_DIM_MAX16]; |
| 1094 | int map[NRRD_DIM_MAX16]; |
| 1095 | |
| 1096 | if (!(nout && nin)) { |
| 1097 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 1098 | return 1; |
| 1099 | } |
| 1100 | if (nout == nin) { |
| 1101 | biffAddf(NRRDnrrdBiffKey, "%s: due to laziness, nout==nin disallowed", me); |
| 1102 | return 1; |
| 1103 | } |
| 1104 | if (1 == nin->dim) { |
| 1105 | biffAddf(NRRDnrrdBiffKey, "%s: can't blockify 1-D nrrd", me); |
| 1106 | return 1; |
| 1107 | } |
| 1108 | /* this shouldn't actually be necessary .. */ |
| 1109 | if (!nrrdElementSize(nin)) { |
| 1110 | biffAddf(NRRDnrrdBiffKey, "%s: nrrd reports zero element size!", me); |
| 1111 | return 1; |
| 1112 | } |
| 1113 | |
| 1114 | numEl = nin->axis[0].size;; |
| 1115 | nout->blockSize = numEl*nrrdElementSize(nin); |
| 1116 | /* |
| 1117 | fprintf(stderr, "!%s: nout->blockSize = %d * %d = %d\n", me, |
| 1118 | numEl, nrrdElementSize(nin), nout->blockSize); |
| 1119 | */ |
| 1120 | for (ai=0; ai<nin->dim-1; ai++) { |
| 1121 | map[ai] = ai+1; |
| 1122 | size[ai] = nin->axis[map[ai]].size; |
| 1123 | } |
| 1124 | |
| 1125 | /* nout->blockSize set above */ |
| 1126 | if (nrrdMaybeAlloc_nva(nout, nrrdTypeBlock, nin->dim-1, size)) { |
| 1127 | biffAddf(NRRDnrrdBiffKey, "%s: failed to allocate output", me); |
| 1128 | return 1; |
| 1129 | } |
| 1130 | memcpy(nout->data, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin))__builtin___memcpy_chk (nout->data, nin->data, nrrdElementNumber (nin)*nrrdElementSize(nin), __builtin_object_size (nout->data , 0)); |
| 1131 | if (nrrdAxisInfoCopy(nout, nin, map, NRRD_AXIS_INFO_NONE0)) { |
| 1132 | biffAddf(NRRDnrrdBiffKey, "%s: failed to copy axes", me); |
| 1133 | return 1; |
| 1134 | } |
| 1135 | if (nrrdContentSet_va(nout, func, nin, "")) { |
| 1136 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1137 | return 1; |
| 1138 | } |
| 1139 | if (nrrdBasicInfoCopy(nout, nin, |
| 1140 | NRRD_BASIC_INFO_DATA_BIT(1<< 1) |
| 1141 | | NRRD_BASIC_INFO_TYPE_BIT(1<< 2) |
| 1142 | | NRRD_BASIC_INFO_BLOCKSIZE_BIT(1<< 3) |
| 1143 | | NRRD_BASIC_INFO_DIMENSION_BIT(1<< 4) |
| 1144 | | NRRD_BASIC_INFO_CONTENT_BIT(1<< 5) |
| 1145 | | NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 1146 | | (nrrdStateKeyValuePairsPropagate |
| 1147 | ? 0 |
| 1148 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15)))) { |
| 1149 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1150 | return 1; |
| 1151 | } |
| 1152 | return 0; |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | ******** nrrdUnblock() |
| 1157 | ** |
| 1158 | ** takes a nrrdTypeBlock nrrd and breaks the blocks into elements of |
| 1159 | ** type "type", and shifts other axis information up by one axis |
| 1160 | */ |
| 1161 | int |
| 1162 | nrrdUnblock(Nrrd *nout, const Nrrd *nin, int type) { |
| 1163 | static const char me[]="nrrdUnblock", func[]="unblock"; |
| 1164 | unsigned int dim; |
| 1165 | size_t size[NRRD_DIM_MAX16], outElSz; |
| 1166 | int map[NRRD_DIM_MAX16]; |
| 1167 | char stmp[2][AIR_STRLEN_SMALL(128+1)]; |
| 1168 | |
| 1169 | if (!(nout && nin)) { |
| 1170 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 1171 | return 1; |
| 1172 | } |
| 1173 | if (nout == nin) { |
| 1174 | biffAddf(NRRDnrrdBiffKey, "%s: due to laziness, nout==nin disallowed", me); |
| 1175 | return 1; |
| 1176 | } |
| 1177 | if (nrrdTypeBlock != nin->type) { |
| 1178 | biffAddf(NRRDnrrdBiffKey, "%s: need input nrrd type %s", me, |
| 1179 | airEnumStr(nrrdType, nrrdTypeBlock)); |
| 1180 | return 1; |
| 1181 | } |
| 1182 | if (NRRD_DIM_MAX16 == nin->dim) { |
| 1183 | biffAddf(NRRDnrrdBiffKey, "%s: input nrrd already at dimension limit (%d)", |
| 1184 | me, NRRD_DIM_MAX16); |
| 1185 | return 1; |
| 1186 | } |
| 1187 | if (airEnumValCheck(nrrdType, type)) { |
| 1188 | biffAddf(NRRDnrrdBiffKey, "%s: invalid requested type %d", me, type); |
| 1189 | return 1; |
| 1190 | } |
| 1191 | if (nrrdTypeBlock == type && (!(0 < nout->blockSize))) { |
| 1192 | biffAddf(NRRDnrrdBiffKey, "%s: for %s type, need nout->blockSize set", me, |
| 1193 | airEnumStr(nrrdType, nrrdTypeBlock)); |
| 1194 | return 1; |
| 1195 | } |
| 1196 | /* this shouldn't actually be necessary .. */ |
| 1197 | if (!(nrrdElementSize(nin))) { |
| 1198 | biffAddf(NRRDnrrdBiffKey, "%s: nin or nout reports zero element size!", me); |
| 1199 | return 1; |
| 1200 | } |
| 1201 | |
| 1202 | nout->type = type; |
| 1203 | outElSz = nrrdElementSize(nout); |
| 1204 | if (nin->blockSize % outElSz) { |
| 1205 | biffAddf(NRRDnrrdBiffKey, "%s: input blockSize (%s) not multiple of output " |
| 1206 | "element size (%s)", me, |
| 1207 | airSprintSize_t(stmp[0], nin->blockSize), |
| 1208 | airSprintSize_t(stmp[1], outElSz)); |
| 1209 | return 1; |
| 1210 | } |
| 1211 | for (dim=0; dim<=nin->dim; dim++) { |
| 1212 | map[dim] = !dim ? -1 : (int)dim-1; |
| 1213 | size[dim] = !dim ? nin->blockSize / outElSz : nin->axis[map[dim]].size; |
| 1214 | } |
| 1215 | /* if nout->blockSize is needed, we've checked that its set */ |
| 1216 | if (nrrdMaybeAlloc_nva(nout, type, nin->dim+1, size)) { |
| 1217 | biffAddf(NRRDnrrdBiffKey, "%s: failed to allocate output", me); |
| 1218 | return 1; |
| 1219 | } |
| 1220 | memcpy(nout->data, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin))__builtin___memcpy_chk (nout->data, nin->data, nrrdElementNumber (nin)*nrrdElementSize(nin), __builtin_object_size (nout->data , 0)); |
| 1221 | if (nrrdAxisInfoCopy(nout, nin, map, NRRD_AXIS_INFO_NONE0)) { |
| 1222 | biffAddf(NRRDnrrdBiffKey, "%s: failed to copy axes", me); |
| 1223 | return 1; |
| 1224 | } |
| 1225 | if (nrrdContentSet_va(nout, func, nin, "")) { |
| 1226 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1227 | return 1; |
| 1228 | } |
| 1229 | if (nrrdBasicInfoCopy(nout, nin, |
| 1230 | NRRD_BASIC_INFO_DATA_BIT(1<< 1) |
| 1231 | | NRRD_BASIC_INFO_TYPE_BIT(1<< 2) |
| 1232 | | NRRD_BASIC_INFO_BLOCKSIZE_BIT(1<< 3) |
| 1233 | | NRRD_BASIC_INFO_DIMENSION_BIT(1<< 4) |
| 1234 | | NRRD_BASIC_INFO_CONTENT_BIT(1<< 5) |
| 1235 | | NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 1236 | | (nrrdStateKeyValuePairsPropagate |
| 1237 | ? 0 |
| 1238 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15)))) { |
| 1239 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1240 | return 1; |
| 1241 | } |
| 1242 | return 0; |
| 1243 | } |
| 1244 | |
| 1245 | /* for nrrdTile .. |
| 1246 | |
| 1247 | will require that # slices be <= number of images: won't crop for you, |
| 1248 | but will happy pad with black. This will be handled in another |
| 1249 | function. Probably unu tile. |
| 1250 | |
| 1251 | */ |
| 1252 | |
| 1253 | /* |
| 1254 | ******** nrrdTile2D() |
| 1255 | ** |
| 1256 | ** Splits axis axSplit into two pieces of size sizeFast and sizeSlow. |
| 1257 | ** The data from the fast partition is juxtaposed following ax0, the |
| 1258 | ** slow after ax1. nrrdAxesMerge is then called to join ax0 and ax1 |
| 1259 | ** with their respective newly permuted data. There should be one |
| 1260 | ** fewer dimensions in the output nrrd than in the input nrrd. |
| 1261 | */ |
| 1262 | int |
| 1263 | nrrdTile2D(Nrrd *nout, const Nrrd *nin, unsigned int ax0, unsigned int ax1, |
| 1264 | unsigned int axSplit, size_t sizeFast, size_t sizeSlow) { |
| 1265 | static const char me[]="nrrdTile2D"; |
| 1266 | int E, /* error flag */ |
| 1267 | insAxis[2*NRRD_DIM_MAX16], /* array for inserting the two axes resulting |
| 1268 | from the initial split amongst the other |
| 1269 | axes: inserted axes go in odd slots, |
| 1270 | other axes go in even slots */ |
| 1271 | mapIdx, /* index for filling map[] */ |
| 1272 | merge[2], /* two axes to be merged post-permute */ |
| 1273 | mergeIdx; /* index for filling merge[] */ |
| 1274 | unsigned int ii, |
| 1275 | map[NRRD_DIM_MAX16]; /* axis map for axis permute */ |
| 1276 | |
| 1277 | if (!(nout && nin)) { |
| 1278 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 1279 | return 1; |
| 1280 | } |
| 1281 | |
| 1282 | /* at least for now, axSplit, ax0, and ax1 need to be distinct */ |
| 1283 | if (!( axSplit != ax0 |
| 1284 | && axSplit != ax1 |
| 1285 | && ax0 != ax1 )) { |
| 1286 | biffAddf(NRRDnrrdBiffKey, "%s: axSplit, ax0, ax1 (%d,%d,%d) must be distinct", |
| 1287 | me, axSplit, ax0, ax1); |
| 1288 | return 1; |
| 1289 | } |
| 1290 | if (!( ax0 < nin->dim |
| 1291 | && ax1 < nin->dim |
| 1292 | && axSplit < nin->dim )) { |
| 1293 | biffAddf(NRRDnrrdBiffKey, "%s: axSplit, ax0, ax1 (%d,%d,%d) must be in range [0,%d]", |
| 1294 | me, axSplit, ax0, ax1, nin->dim-1); |
| 1295 | return 1; |
| 1296 | } |
| 1297 | |
| 1298 | if (nout != nin) { |
| 1299 | if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 1300 | | (nrrdStateKeyValuePairsPropagate |
| 1301 | ? 0 |
| 1302 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15))))) { |
| 1303 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1304 | return 1; |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | /* increment ax0 and ax1 if they're above axSplit, since the |
| 1309 | initial axis split will bump up the corresponding axes */ |
| 1310 | ax0 += (axSplit < ax0); |
| 1311 | ax1 += (axSplit < ax1); |
| 1312 | /* initialize insAxis to all invalid (blank) values */ |
| 1313 | for (ii=0; ii<2*(nout->dim+1); ii++) { |
| 1314 | insAxis[ii] = -1; |
| 1315 | } |
| 1316 | /* run through post-split axes, inserting axSplit and axSplit+1 |
| 1317 | into the slots after ax0 and ax1 respectively, otherwise |
| 1318 | set the identity map */ |
| 1319 | for (ii=0; ii<(nout->dim+1); ii++) { |
| 1320 | if (axSplit == ii) { |
| 1321 | insAxis[2*ax0 + 1] = axSplit; |
| 1322 | } else if (axSplit+1 == ii) { |
| 1323 | insAxis[2*ax1 + 1] = axSplit+1; |
| 1324 | } else { |
| 1325 | insAxis[2*ii + 0] = ii; |
| 1326 | } |
| 1327 | } |
| 1328 | /* settle the values from insAxis[] into map[] by removing the -1's */ |
| 1329 | mergeIdx = mapIdx = 0; |
| 1330 | for (ii=0; ii<2*(nout->dim+1); ii++) { |
| 1331 | if (insAxis[ii] != -1) { |
| 1332 | if (1 == ii % 2) { |
| 1333 | /* its an odd entry in insAxis[], so the previous axis is to be |
| 1334 | merged. Using mapIdx-1 is legit because we disallow |
| 1335 | axSplit == ax{0,1} */ |
| 1336 | merge[mergeIdx++] = mapIdx-1; |
| 1337 | } |
| 1338 | map[mapIdx++] = insAxis[ii]; |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | E = AIR_FALSE0; |
| 1343 | if (!E) E |= nrrdAxesSplit(nout, nout, axSplit, sizeFast, sizeSlow); |
| 1344 | if (!E) E |= nrrdAxesPermute(nout, nout, map); |
| 1345 | if (!E) E |= nrrdAxesMerge(nout, nout, merge[1]); |
| 1346 | if (!E) E |= nrrdAxesMerge(nout, nout, merge[0]); |
| 1347 | if (E) { |
| 1348 | biffAddf(NRRDnrrdBiffKey, "%s: trouble", me); |
| 1349 | return 1; |
| 1350 | } |
| 1351 | /* HEY: set content */ |
| 1352 | if (nrrdBasicInfoCopy(nout, nin, |
| 1353 | NRRD_BASIC_INFO_DATA_BIT(1<< 1) |
| 1354 | | NRRD_BASIC_INFO_TYPE_BIT(1<< 2) |
| 1355 | | NRRD_BASIC_INFO_BLOCKSIZE_BIT(1<< 3) |
| 1356 | | NRRD_BASIC_INFO_DIMENSION_BIT(1<< 4) |
| 1357 | | NRRD_BASIC_INFO_CONTENT_BIT(1<< 5) |
| 1358 | | NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 1359 | | (nrrdStateKeyValuePairsPropagate |
| 1360 | ? 0 |
| 1361 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15)))) { |
| 1362 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1363 | return 1; |
| 1364 | } |
| 1365 | return 0; |
| 1366 | } |
| 1367 | |
| 1368 | /* |
| 1369 | ******** nrrdUntile2D() |
| 1370 | ** |
| 1371 | ** This will split ax0 into nin->axis[ax0].size/sizeFast and sizeFast |
| 1372 | ** sizes. ax1 will then be split into nin->axis[ax1].size/sizeSlow |
| 1373 | ** and sizeSlow sizes. The axes corresponding to sizeFast and |
| 1374 | ** sizeSlow will be permuted and merged such that |
| 1375 | ** nout->axis[axMerge].size == sizeFast*sizeSlow. |
| 1376 | ** |
| 1377 | ** The thing to be careful of is that axMerge identifies an axis |
| 1378 | ** in the array set *after* the two axis splits, not before. This |
| 1379 | ** is in contrast to the axSplit (and ax0 and ax1) argument of nrrdTile2D |
| 1380 | ** which identifies axes in the original nrrd. |
| 1381 | */ |
| 1382 | int nrrdUntile2D(Nrrd *nout, const Nrrd *nin, |
| 1383 | unsigned int ax0, unsigned int ax1, |
| 1384 | unsigned int axMerge, size_t sizeFast, size_t sizeSlow) { |
| 1385 | static const char me[]="nrrdUntile2D"; |
| 1386 | int E; |
| 1387 | unsigned int ii, mapIdx, map[NRRD_DIM_MAX16]; |
| 1388 | char stmp[2][AIR_STRLEN_SMALL(128+1)]; |
| 1389 | |
| 1390 | if (!(nout && nin)) { |
| 1391 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 1392 | return 1; |
| 1393 | } |
| 1394 | if (ax0 == ax1) { |
| 1395 | biffAddf(NRRDnrrdBiffKey, "%s: ax0 (%d) and ax1 (%d) must be distinct", |
| 1396 | me, ax0, ax1); |
| 1397 | return 1; |
| 1398 | } |
| 1399 | if (!( ax0 < nin->dim && ax1 < nin->dim )) { |
| 1400 | biffAddf(NRRDnrrdBiffKey, "%s: ax0, ax1 (%d,%d) must be in range [0,%d]", |
| 1401 | me, ax0, ax1, nin->dim-1); |
| 1402 | return 1; |
| 1403 | } |
| 1404 | if (!( axMerge <= nin->dim )) { |
| 1405 | biffAddf(NRRDnrrdBiffKey, "%s: axMerge (%d) must be in range [0,%d]", |
| 1406 | me, axMerge, nin->dim); |
| 1407 | return 1; |
| 1408 | } |
| 1409 | if (nin->axis[ax0].size != sizeFast*(nin->axis[ax0].size/sizeFast)) { |
| 1410 | biffAddf(NRRDnrrdBiffKey, "%s: sizeFast (%s) doesn't divide into axis %d size (%s)", |
| 1411 | me, airSprintSize_t(stmp[0], sizeFast), |
| 1412 | ax0, airSprintSize_t(stmp[1], nin->axis[ax0].size)); |
| 1413 | return 1; |
| 1414 | } |
| 1415 | if (nin->axis[ax1].size != sizeSlow*(nin->axis[ax1].size/sizeSlow)) { |
| 1416 | biffAddf(NRRDnrrdBiffKey, "%s: sizeSlow (%s) doesn't divide into axis %d size (%s)", |
| 1417 | me, airSprintSize_t(stmp[0], sizeSlow), |
| 1418 | ax1, airSprintSize_t(stmp[1], nin->axis[ax1].size)); |
| 1419 | return 1; |
| 1420 | } |
| 1421 | |
| 1422 | if (nout != nin) { |
| 1423 | if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 1424 | | (nrrdStateKeyValuePairsPropagate |
| 1425 | ? 0 |
| 1426 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15))))) { |
| 1427 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1428 | return 1; |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | /* Split the larger (slower) axis first. */ |
| 1433 | E = AIR_FALSE0; |
| 1434 | if (ax0 < ax1) { |
| 1435 | if (!E) E |= nrrdAxesSplit(nout, nout, ax1, |
| 1436 | nin->axis[ax1].size/sizeSlow, sizeSlow); |
| 1437 | if (!E) E |= nrrdAxesSplit(nout, nout, ax0, |
| 1438 | nin->axis[ax0].size/sizeFast, sizeFast); |
| 1439 | /* Increment the larger value as it will get shifted by the lower |
| 1440 | split. */ |
| 1441 | ax1++; |
| 1442 | } else { |
| 1443 | if (!E) E |= nrrdAxesSplit(nout, nout, ax0, |
| 1444 | nin->axis[ax0].size/sizeFast, sizeFast); |
| 1445 | if (!E) E |= nrrdAxesSplit(nout, nout, ax1, |
| 1446 | nin->axis[ax1].size/sizeSlow, sizeSlow); |
| 1447 | ax0++; |
| 1448 | } |
| 1449 | if (E) { |
| 1450 | biffAddf(NRRDnrrdBiffKey, "%s: trouble with initial splitting", me); |
| 1451 | return 1; |
| 1452 | } |
| 1453 | |
| 1454 | /* Determine the axis permutation map */ |
| 1455 | mapIdx = 0; |
| 1456 | for (ii=0; ii<nout->dim; ii++) { |
| 1457 | if (mapIdx == axMerge) { |
| 1458 | /* Insert the slow parts of the axes that have been split */ |
| 1459 | map[mapIdx++] = ax0+1; |
| 1460 | map[mapIdx++] = ax1+1; |
| 1461 | } |
| 1462 | if (ii == ax0+1 || ii == ax1+1) { |
| 1463 | /* These are handled by the logic above */ |
| 1464 | } else { |
| 1465 | /* Otherwise use the identity map */ |
| 1466 | map[mapIdx++] = ii; |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | /* |
| 1471 | fprintf(stderr, "%s: map =", me); |
| 1472 | for (ii=0; ii<nout->dim; ii++) { |
| 1473 | fprintf(stderr, " %d", map[ii]); |
| 1474 | } |
| 1475 | fprintf(stderr, "; axMerge = %d\n", axMerge); |
| 1476 | */ |
| 1477 | |
| 1478 | E = AIR_FALSE0; |
| 1479 | if (!E) E |= nrrdAxesPermute(nout, nout, map); |
| 1480 | if (!E) E |= nrrdAxesMerge(nout, nout, axMerge); |
| 1481 | if (E) { |
| 1482 | biffAddf(NRRDnrrdBiffKey, "%s: trouble", me); |
| 1483 | return 1; |
| 1484 | } |
| 1485 | |
| 1486 | if (nrrdBasicInfoCopy(nout, nin, |
| 1487 | NRRD_BASIC_INFO_DATA_BIT(1<< 1) |
| 1488 | | NRRD_BASIC_INFO_TYPE_BIT(1<< 2) |
| 1489 | | NRRD_BASIC_INFO_BLOCKSIZE_BIT(1<< 3) |
| 1490 | | NRRD_BASIC_INFO_DIMENSION_BIT(1<< 4) |
| 1491 | | NRRD_BASIC_INFO_CONTENT_BIT(1<< 5) |
| 1492 | | NRRD_BASIC_INFO_COMMENTS_BIT(1<<14) |
| 1493 | | (nrrdStateKeyValuePairsPropagate |
| 1494 | ? 0 |
| 1495 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15)))) { |
| 1496 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 1497 | return 1; |
| 1498 | } |
| 1499 | return 0; |
| 1500 | } |
| 1501 | |
| 1502 | #if 0 |
| 1503 | int |
| 1504 | nrrdShift(Nrrd *nout, const Nrrd *nin, const ptrdiff_t *offset, |
| 1505 | int boundary, double padValue) { |
| 1506 | static const char me[]="nrrdShift", func[] = "shift"; |
| 1507 | |
| 1508 | if (!(nout && nin && offset)) { |
| 1509 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 1510 | return 1; |
| 1511 | } |
| 1512 | if (nout == nin) { |
| 1513 | biffAddf(NRRDnrrdBiffKey, "%s: nout==nin disallowed", me); |
| 1514 | return 1; |
| 1515 | } |
| 1516 | |
| 1517 | return 0; |
| 1518 | } |
| 1519 | #endif |
| 1520 | |
| 1521 | /* ---- END non-NrrdIO */ |