File: | src/ell/eigen.c |
Location: | line 688, column 3 |
Description: | Assigned value is garbage or undefined |
1 | /* | ||
2 | Teem: Tools to process and visualize scientific data and images . | ||
3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago | ||
4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann | ||
5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah | ||
6 | |||
7 | This library is free software; you can redistribute it and/or | ||
8 | modify it under the terms of the GNU Lesser General Public License | ||
9 | (LGPL) as published by the Free Software Foundation; either | ||
10 | version 2.1 of the License, or (at your option) any later version. | ||
11 | The terms of redistributing and/or modifying this software also | ||
12 | include exceptions to the LGPL that facilitate static linking. | ||
13 | |||
14 | This library is distributed in the hope that it will be useful, | ||
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
17 | Lesser General Public License for more details. | ||
18 | |||
19 | You should have received a copy of the GNU Lesser General Public License | ||
20 | along with this library; if not, write to Free Software Foundation, Inc., | ||
21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
22 | */ | ||
23 | |||
24 | |||
25 | #include "ell.h" | ||
26 | |||
27 | /* lop A | ||
28 | fprintf(stderr, "_ellAlign3: ----------\n"); | ||
29 | fprintf(stderr, "_ellAlign3: v0 = %g %g %g\n", (v+0)[0], (v+0)[1], (v+0)[2]); | ||
30 | fprintf(stderr, "_ellAlign3: v3 = %g %g %g\n", (v+3)[0], (v+3)[1], (v+3)[2]); | ||
31 | fprintf(stderr, "_ellAlign3: v6 = %g %g %g\n", (v+6)[0], (v+6)[1], (v+6)[2]); | ||
32 | fprintf(stderr, "_ellAlign3: d = %g %g %g -> %d %d %d\n", | ||
33 | d0, d1, d2, Mi, ai, bi); | ||
34 | fprintf(stderr, "_ellAlign3: pre dot signs (03, 06, 36): %d %d %d\n", | ||
35 | airSgn(ELL_3V_DOT(v+0, v+3)), | ||
36 | airSgn(ELL_3V_DOT(v+0, v+6)), | ||
37 | airSgn(ELL_3V_DOT(v+3, v+6))); | ||
38 | */ | ||
39 | |||
40 | /* lop B | ||
41 | fprintf(stderr, "_ellAlign3: v0 = %g %g %g\n", (v+0)[0], (v+0)[1], (v+0)[2]); | ||
42 | fprintf(stderr, "_ellAlign3: v3 = %g %g %g\n", (v+3)[0], (v+3)[1], (v+3)[2]); | ||
43 | fprintf(stderr, "_ellAlign3: v6 = %g %g %g\n", (v+6)[0], (v+6)[1], (v+6)[2]); | ||
44 | fprintf(stderr, "_ellAlign3: post dot signs %d %d %d\n", | ||
45 | airSgn(ELL_3V_DOT(v+0, v+3)), | ||
46 | airSgn(ELL_3V_DOT(v+0, v+6)), | ||
47 | airSgn(ELL_3V_DOT(v+3, v+6))); | ||
48 | if (airSgn(ELL_3V_DOT(v+0, v+3)) < 0 | ||
49 | || airSgn(ELL_3V_DOT(v+0, v+6)) < 0 | ||
50 | || airSgn(ELL_3V_DOT(v+3, v+6)) < 0) { | ||
51 | exit(1); | ||
52 | } | ||
53 | */ | ||
54 | |||
55 | /* | ||
56 | ******** ell_quadratic() | ||
57 | ** | ||
58 | ** finds real roots of A*x^2 + B*x + C. | ||
59 | ** | ||
60 | ** records the found roots in the given root array, and returns a | ||
61 | ** value from the ell_quadratic_root* enum: | ||
62 | ** | ||
63 | ** ell_quadratic_root_two: | ||
64 | ** two distinct roots root[0] > root[1] | ||
65 | ** ell_quadratic_root_complex: | ||
66 | ** two complex conjugate roots at root[0] +/- i*root[1] | ||
67 | ** ell_quadratic_root_double: | ||
68 | ** a repeated root root[0] == root[1] | ||
69 | ** | ||
70 | ** HEY simple as this code may seem, it has definitely numerical | ||
71 | ** issues that have not been explored or fixed, such as what if A is | ||
72 | ** near 0. Also correctly handling the transition from double root to | ||
73 | ** complex roots needs to be re-thought, as well as this issue: | ||
74 | ** http://people.csail.mit.edu/bkph/articles/Quadratics.pdf Should | ||
75 | ** also understand http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf | ||
76 | ** | ||
77 | ** This does NOT use biff | ||
78 | */ | ||
79 | int | ||
80 | ell_quadratic(double root[2], double A, double B, double C) { | ||
81 | /* static const char me[]="ell_quadratic"; */ | ||
82 | int ret; | ||
83 | double disc, rd, tmp, eps=1.0E-12; | ||
84 | |||
85 | disc = B*B - 4*A*C; | ||
86 | if (disc > 0) { | ||
87 | rd = sqrt(disc); | ||
88 | root[0] = (-B + rd)/(2*A); | ||
89 | root[1] = (-B - rd)/(2*A); | ||
90 | if (root[0] < root[1]) { | ||
91 | ELL_SWAP2(root[0], root[1], tmp)((tmp)=(root[0]),(root[0])=(root[1]),(root[1])=(tmp)); | ||
92 | } | ||
93 | ret = ell_quadratic_root_two; | ||
94 | } else if (disc < -eps) { | ||
95 | root[0] = -B/(2*A); | ||
96 | root[1] = sqrt(-disc)/(2*A); | ||
97 | ret = ell_quadratic_root_complex; | ||
98 | } else { | ||
99 | /* 0 == disc or only *very slightly* negative */ | ||
100 | root[0] = root[1] = -B/(2*A); | ||
101 | ret = ell_quadratic_root_double; | ||
102 | } | ||
103 | return ret; | ||
104 | } | ||
105 | |||
106 | int | ||
107 | ell_2m_eigenvalues_d(double eval[2], const double m[4]) { | ||
108 | double A, B, C; | ||
109 | int ret; | ||
110 | |||
111 | A = 1; | ||
112 | B = -m[0] - m[3]; | ||
113 | C = m[0]*m[3] - m[1]*m[2]; | ||
114 | ret = ell_quadratic(eval, A, B, C); | ||
115 | return ret; | ||
116 | } | ||
117 | |||
118 | void | ||
119 | ell_2m_1d_nullspace_d(double ans[2], const double _n[4]) { | ||
120 | /* static const char me[]="ell_2m_1d_nullspace_d"; */ | ||
121 | double n[4], dot, len, rowv[2]; | ||
122 | |||
123 | ELL_4V_COPY(n, _n)((n)[0] = (_n)[0], (n)[1] = (_n)[1], (n)[2] = (_n)[2], (n)[3] = (_n)[3]); | ||
124 | dot = ELL_2V_DOT(n + 2*0, n + 2*1)((n + 2*0)[0]*(n + 2*1)[0] + (n + 2*0)[1]*(n + 2*1)[1]); | ||
125 | /* | ||
126 | fprintf(stderr, "!%s: n = {{%g,%g},{%g,%g}}\n", me, | ||
127 | n[0], n[1], n[2], n[3]); | ||
128 | fprintf(stderr, "!%s: dot = %g\n", me, dot); | ||
129 | */ | ||
130 | if (dot > 0) { | ||
131 | ELL_2V_ADD2(rowv, n + 2*0, n + 2*1)((rowv)[0] = (n + 2*0)[0] + (n + 2*1)[0], (rowv)[1] = (n + 2* 0)[1] + (n + 2*1)[1]); | ||
132 | } else { | ||
133 | ELL_2V_SUB(rowv, n + 2*0, n + 2*1)((rowv)[0] = (n + 2*0)[0] - (n + 2*1)[0], (rowv)[1] = (n + 2* 0)[1] - (n + 2*1)[1]); | ||
134 | } | ||
135 | /* fprintf(stderr, "!%s: rowv = %g %g\n", me, rowv[0], rowv[1]); */ | ||
136 | /* have found good description of what's perpendicular nullspace, | ||
137 | so now perpendicularize it */ | ||
138 | ans[0] = rowv[1]; | ||
139 | ans[1] = -rowv[0]; | ||
140 | ELL_2V_NORM(ans, ans, len)(len = (sqrt((((ans))[0]*((ans))[0] + ((ans))[1]*((ans))[1])) ), ((ans)[0] = (1.0/len)*(ans)[0], (ans)[1] = (1.0/len)*(ans) [1])); | ||
141 | /* | ||
142 | if (!(AIR_EXISTS(ans[0]) && AIR_EXISTS(ans[1]))) { | ||
143 | fprintf(stderr, "!%s: bad! %g %g\n", me, ans[0], ans[1]); | ||
144 | } | ||
145 | */ | ||
146 | return; | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | ******** ell_2m_eigensolve_d | ||
151 | ** | ||
152 | ** Eigensolve 2x2 matrix, which may be asymmetric | ||
153 | */ | ||
154 | int | ||
155 | ell_2m_eigensolve_d(double eval[2], double evec[4], const double m[4]) { | ||
156 | /* static const char me[]="ell_2m_eigensolve_d"; */ | ||
157 | double nul[4], ident[4] = {1,0,0,1}; | ||
158 | int ret; | ||
159 | |||
160 | ret = ell_2m_eigenvalues_d(eval, m); | ||
161 | /* | ||
162 | fprintf(stderr, "!%s: m = {{%.17g,%.17g},{%.17g,%.17g}} -> " | ||
163 | "%s evals (%.17g,%.17g)\n", me, m[0], m[1], m[2], m[3], | ||
164 | airEnumStr(ell_quadratic_root, ret), eval[0], eval[1]); | ||
165 | */ | ||
166 | switch (ret) { | ||
167 | case ell_quadratic_root_two: | ||
168 | ELL_4V_SCALE_ADD2(nul, 1.0, m, -eval[0], ident)((nul)[0] = (1.0)*(m)[0] + (-eval[0])*(ident)[0], (nul)[1] = ( 1.0)*(m)[1] + (-eval[0])*(ident)[1], (nul)[2] = (1.0)*(m)[2] + (-eval[0])*(ident)[2], (nul)[3] = (1.0)*(m)[3] + (-eval[0])* (ident)[3]); | ||
169 | ell_2m_1d_nullspace_d(evec + 2*0, nul); | ||
170 | /* | ||
171 | fprintf(stderr, "!%s: eval=%.17g -> nul {{%.17g,%.17g},{%.17g,%.17g}} " | ||
172 | "-> evec %.17g %.17g\n", me, eval[0], | ||
173 | nul[0], nul[1], nul[2], nul[3], | ||
174 | (evec + 2*0)[0], (evec + 2*0)[1]); | ||
175 | */ | ||
176 | ELL_4V_SCALE_ADD2(nul, 1.0, m, -eval[1], ident)((nul)[0] = (1.0)*(m)[0] + (-eval[1])*(ident)[0], (nul)[1] = ( 1.0)*(m)[1] + (-eval[1])*(ident)[1], (nul)[2] = (1.0)*(m)[2] + (-eval[1])*(ident)[2], (nul)[3] = (1.0)*(m)[3] + (-eval[1])* (ident)[3]); | ||
177 | ell_2m_1d_nullspace_d(evec + 2*1, nul); | ||
178 | /* | ||
179 | fprintf(stderr, "!%s: eval=%.17g -> nul {{%.17g,%.17g},{%.17g,%.17g}} " | ||
180 | "-> evec %.17g %.17g\n", me, eval[1], | ||
181 | nul[0], nul[1], nul[2], nul[3], | ||
182 | (evec + 2*1)[0], (evec + 2*1)[1]); | ||
183 | */ | ||
184 | break; | ||
185 | case ell_quadratic_root_double: | ||
186 | /* fprintf(stderr, "!%s: double eval=%.17g\n", me, eval[0]); */ | ||
187 | ELL_4V_SCALE_ADD2(nul, 1.0, m, -eval[0], ident)((nul)[0] = (1.0)*(m)[0] + (-eval[0])*(ident)[0], (nul)[1] = ( 1.0)*(m)[1] + (-eval[0])*(ident)[1], (nul)[2] = (1.0)*(m)[2] + (-eval[0])*(ident)[2], (nul)[3] = (1.0)*(m)[3] + (-eval[0])* (ident)[3]); | ||
188 | /* | ||
189 | fprintf(stderr, "!%s: nul = {{%.17g,%.17g},{%.17g,%.17g}} (len %.17g)\n", | ||
190 | me, nul[0], nul[1], nul[2], nul[3], ELL_4V_LEN(nul)); | ||
191 | */ | ||
192 | if (ELL_4V_DOT(nul, nul)((nul)[0]*(nul)[0] + (nul)[1]*(nul)[1] + (nul)[2]*(nul)[2] + ( nul)[3]*(nul)[3])) { | ||
193 | /* projecting out the nullspace produced non-zero matrix, | ||
194 | (possibly from an asymmetric matrix) so there is real | ||
195 | orientation to recover */ | ||
196 | ell_2m_1d_nullspace_d(evec + 2*0, nul); | ||
197 | ELL_2V_COPY(evec + 2*1, evec + 2*0)((evec + 2*1)[0] = (evec + 2*0)[0], (evec + 2*1)[1] = (evec + 2*0)[1]); | ||
198 | } else { | ||
199 | /* so this was isotropic symmetric; invent orientation */ | ||
200 | ELL_2V_SET(evec + 2*0, 1, 0)((evec + 2*0)[0]=(1), (evec + 2*0)[1]=(0)); | ||
201 | ELL_2V_SET(evec + 2*1, 0, 1)((evec + 2*1)[0]=(0), (evec + 2*1)[1]=(1)); | ||
202 | } | ||
203 | break; | ||
204 | case ell_quadratic_root_complex: | ||
205 | /* HEY punting for now */ | ||
206 | ELL_2V_SET(evec + 2*0, 0.5, 0)((evec + 2*0)[0]=(0.5), (evec + 2*0)[1]=(0)); | ||
207 | ELL_2V_SET(evec + 2*1, 0, 0.5)((evec + 2*1)[0]=(0), (evec + 2*1)[1]=(0.5)); | ||
208 | break; | ||
209 | default: | ||
210 | /* fprintf(stderr, "%s: unexpected solution indicator %d\n", me, ret); */ | ||
211 | break; | ||
212 | } | ||
213 | return ret; | ||
214 | } | ||
215 | |||
216 | |||
217 | void | ||
218 | _ell_align3_d(double v[9]) { | ||
219 | double d0, d1, d2; | ||
220 | int Mi, ai, bi; | ||
221 | |||
222 | d0 = ELL_3V_DOT(v+0, v+0)((v+0)[0]*(v+0)[0] + (v+0)[1]*(v+0)[1] + (v+0)[2]*(v+0)[2]); | ||
223 | d1 = ELL_3V_DOT(v+3, v+3)((v+3)[0]*(v+3)[0] + (v+3)[1]*(v+3)[1] + (v+3)[2]*(v+3)[2]); | ||
224 | d2 = ELL_3V_DOT(v+6, v+6)((v+6)[0]*(v+6)[0] + (v+6)[1]*(v+6)[1] + (v+6)[2]*(v+6)[2]); | ||
225 | Mi = ELL_MAX3_IDX(d0, d1, d2)(d0 > d1 ? (d1 > d2 ? 0 : (d0 > d2 ? 0 : 2)) : (d2 > d1 ? 2 : 1)); | ||
226 | ai = (Mi + 1) % 3; | ||
227 | bi = (Mi + 2) % 3; | ||
228 | /* lop A */ | ||
229 | if (ELL_3V_DOT(v+3*Mi, v+3*ai)((v+3*Mi)[0]*(v+3*ai)[0] + (v+3*Mi)[1]*(v+3*ai)[1] + (v+3*Mi) [2]*(v+3*ai)[2]) < 0) { | ||
230 | ELL_3V_SCALE(v+3*ai, -1, v+3*ai)((v+3*ai)[0] = (-1)*(v+3*ai)[0], (v+3*ai)[1] = (-1)*(v+3*ai)[ 1], (v+3*ai)[2] = (-1)*(v+3*ai)[2]); | ||
231 | } | ||
232 | if (ELL_3V_DOT(v+3*Mi, v+3*bi)((v+3*Mi)[0]*(v+3*bi)[0] + (v+3*Mi)[1]*(v+3*bi)[1] + (v+3*Mi) [2]*(v+3*bi)[2]) < 0) { | ||
233 | ELL_3V_SCALE(v+3*bi, -1, v+3*bi)((v+3*bi)[0] = (-1)*(v+3*bi)[0], (v+3*bi)[1] = (-1)*(v+3*bi)[ 1], (v+3*bi)[2] = (-1)*(v+3*bi)[2]); | ||
234 | } | ||
235 | /* lob B */ | ||
236 | /* we can't guarantee that dot(v+3*ai,v+3*bi) > 0 . . . */ | ||
237 | } | ||
238 | |||
239 | /* | ||
240 | ** leaves v+3*0 untouched, but makes sure that v+3*0, v+3*1, and v+3*2 | ||
241 | ** are mutually orthogonal. Also leaves the magnitudes of all | ||
242 | ** vectors unchanged. | ||
243 | */ | ||
244 | void | ||
245 | _ell_3m_enforce_orthogonality(double v[9]) { | ||
246 | double d00, d10, d11, d20, d21, d22, scl, tv[3]; | ||
247 | |||
248 | d00 = ELL_3V_DOT(v+3*0, v+3*0)((v+3*0)[0]*(v+3*0)[0] + (v+3*0)[1]*(v+3*0)[1] + (v+3*0)[2]*( v+3*0)[2]); | ||
249 | d10 = ELL_3V_DOT(v+3*1, v+3*0)((v+3*1)[0]*(v+3*0)[0] + (v+3*1)[1]*(v+3*0)[1] + (v+3*1)[2]*( v+3*0)[2]); | ||
250 | d11 = ELL_3V_DOT(v+3*1, v+3*1)((v+3*1)[0]*(v+3*1)[0] + (v+3*1)[1]*(v+3*1)[1] + (v+3*1)[2]*( v+3*1)[2]); | ||
251 | ELL_3V_SCALE_ADD2(tv, 1, v+3*1, -d10/d00, v+3*0)((tv)[0] = (1)*(v+3*1)[0] + (-d10/d00)*(v+3*0)[0], (tv)[1] = ( 1)*(v+3*1)[1] + (-d10/d00)*(v+3*0)[1], (tv)[2] = (1)*(v+3*1)[ 2] + (-d10/d00)*(v+3*0)[2]); | ||
252 | scl = sqrt(d11/ELL_3V_DOT(tv, tv)((tv)[0]*(tv)[0] + (tv)[1]*(tv)[1] + (tv)[2]*(tv)[2])); | ||
253 | ELL_3V_SCALE(v+3*1, scl, tv)((v+3*1)[0] = (scl)*(tv)[0], (v+3*1)[1] = (scl)*(tv)[1], (v+3 *1)[2] = (scl)*(tv)[2]); | ||
254 | d20 = ELL_3V_DOT(v+3*2, v+3*0)((v+3*2)[0]*(v+3*0)[0] + (v+3*2)[1]*(v+3*0)[1] + (v+3*2)[2]*( v+3*0)[2]); | ||
255 | d21 = ELL_3V_DOT(v+3*2, v+3*1)((v+3*2)[0]*(v+3*1)[0] + (v+3*2)[1]*(v+3*1)[1] + (v+3*2)[2]*( v+3*1)[2]); | ||
256 | d22 = ELL_3V_DOT(v+3*2, v+3*2)((v+3*2)[0]*(v+3*2)[0] + (v+3*2)[1]*(v+3*2)[1] + (v+3*2)[2]*( v+3*2)[2]); | ||
257 | ELL_3V_SCALE_ADD3(tv, 1, v+3*2, -d20/d00, v+3*0, -d21/d00, v+3*1)((tv)[0] = (1)*(v+3*2)[0] + (-d20/d00)*(v+3*0)[0] + (-d21/d00 )*(v+3*1)[0], (tv)[1] = (1)*(v+3*2)[1] + (-d20/d00)*(v+3*0)[1 ] + (-d21/d00)*(v+3*1)[1], (tv)[2] = (1)*(v+3*2)[2] + (-d20/d00 )*(v+3*0)[2] + (-d21/d00)*(v+3*1)[2]); | ||
258 | scl = sqrt(d22/ELL_3V_DOT(tv, tv)((tv)[0]*(tv)[0] + (tv)[1]*(tv)[1] + (tv)[2]*(tv)[2])); | ||
259 | ELL_3V_SCALE(v+3*2, scl, tv)((v+3*2)[0] = (scl)*(tv)[0], (v+3*2)[1] = (scl)*(tv)[1], (v+3 *2)[2] = (scl)*(tv)[2]); | ||
260 | return; | ||
261 | } | ||
262 | |||
263 | /* | ||
264 | ** makes sure that v+3*2 has a positive dot product with | ||
265 | ** cross product of v+3*0 and v+3*1 | ||
266 | */ | ||
267 | void | ||
268 | _ell_3m_make_right_handed_d(double v[9]) { | ||
269 | double x[3]; | ||
270 | |||
271 | ELL_3V_CROSS(x, v+3*0, v+3*1)((x)[0] = (v+3*0)[1]*(v+3*1)[2] - (v+3*0)[2]*(v+3*1)[1], (x)[ 1] = (v+3*0)[2]*(v+3*1)[0] - (v+3*0)[0]*(v+3*1)[2], (x)[2] = ( v+3*0)[0]*(v+3*1)[1] - (v+3*0)[1]*(v+3*1)[0]); | ||
272 | if (0 > ELL_3V_DOT(x, v+3*2)((x)[0]*(v+3*2)[0] + (x)[1]*(v+3*2)[1] + (x)[2]*(v+3*2)[2])) { | ||
273 | ELL_3V_SCALE(v+3*2, -1, v+3*2)((v+3*2)[0] = (-1)*(v+3*2)[0], (v+3*2)[1] = (-1)*(v+3*2)[1], ( v+3*2)[2] = (-1)*(v+3*2)[2]); | ||
274 | } | ||
275 | } | ||
276 | |||
277 | /* lop A | ||
278 | fprintf(stderr, "=== pre ===\n"); | ||
279 | fprintf(stderr, "crosses: %g %g %g\n", (t+0)[0], (t+0)[1], (t+0)[2]); | ||
280 | fprintf(stderr, " %g %g %g\n", (t+3)[0], (t+3)[1], (t+3)[2]); | ||
281 | fprintf(stderr, " %g %g %g\n", (t+6)[0], (t+6)[1], (t+6)[2]); | ||
282 | fprintf(stderr, "cross dots: %g %g %g\n", | ||
283 | ELL_3V_DOT(t+0, t+3), ELL_3V_DOT(t+0, t+6), ELL_3V_DOT(t+3, t+6)); | ||
284 | */ | ||
285 | |||
286 | /* lop B | ||
287 | fprintf(stderr, "=== post ===\n"); | ||
288 | fprintf(stderr, "crosses: %g %g %g\n", (t+0)[0], (t+0)[1], (t+0)[2]); | ||
289 | fprintf(stderr, " %g %g %g\n", (t+3)[0], (t+3)[1], (t+3)[2]); | ||
290 | fprintf(stderr, " %g %g %g\n", (t+6)[0], (t+6)[1], (t+6)[2]); | ||
291 | fprintf(stderr, "cross dots: %g %g %g\n", | ||
292 | ELL_3V_DOT(t+0, t+3), ELL_3V_DOT(t+0, t+6), ELL_3V_DOT(t+3, t+6)); | ||
293 | */ | ||
294 | |||
295 | /* | ||
296 | ******** ell_3m_1d_nullspace_d() | ||
297 | ** | ||
298 | ** the given matrix is assumed to have a nullspace of dimension one. | ||
299 | ** A normalized vector which spans the nullspace is put into ans. | ||
300 | ** | ||
301 | ** The given nullspace matrix is NOT modified. | ||
302 | ** | ||
303 | ** This does NOT use biff | ||
304 | */ | ||
305 | void | ||
306 | ell_3m_1d_nullspace_d(double ans[3], const double _n[9]) { | ||
307 | double t[9], n[9], norm; | ||
308 | |||
309 | ELL_3M_TRANSPOSE(n, _n)((n)[0] = (_n)[0], (n)[1] = (_n)[3], (n)[2] = (_n)[6], (n)[3] = (_n)[1], (n)[4] = (_n)[4], (n)[5] = (_n)[7], (n)[6] = (_n) [2], (n)[7] = (_n)[5], (n)[8] = (_n)[8]); | ||
310 | /* find the three cross-products of pairs of column vectors of n */ | ||
311 | ELL_3V_CROSS(t+0, n+0, n+3)((t+0)[0] = (n+0)[1]*(n+3)[2] - (n+0)[2]*(n+3)[1], (t+0)[1] = (n+0)[2]*(n+3)[0] - (n+0)[0]*(n+3)[2], (t+0)[2] = (n+0)[0]*( n+3)[1] - (n+0)[1]*(n+3)[0]); | ||
312 | ELL_3V_CROSS(t+3, n+0, n+6)((t+3)[0] = (n+0)[1]*(n+6)[2] - (n+0)[2]*(n+6)[1], (t+3)[1] = (n+0)[2]*(n+6)[0] - (n+0)[0]*(n+6)[2], (t+3)[2] = (n+0)[0]*( n+6)[1] - (n+0)[1]*(n+6)[0]); | ||
313 | ELL_3V_CROSS(t+6, n+3, n+6)((t+6)[0] = (n+3)[1]*(n+6)[2] - (n+3)[2]*(n+6)[1], (t+6)[1] = (n+3)[2]*(n+6)[0] - (n+3)[0]*(n+6)[2], (t+6)[2] = (n+3)[0]*( n+6)[1] - (n+3)[1]*(n+6)[0]); | ||
314 | /* lop A */ | ||
315 | _ell_align3_d(t); | ||
316 | /* lop B */ | ||
317 | /* add them up (longer, hence more accurate, should dominate) */ | ||
318 | ELL_3V_ADD3(ans, t+0, t+3, t+6)((ans)[0] = (t+0)[0] + (t+3)[0] + (t+6)[0], (ans)[1] = (t+0)[ 1] + (t+3)[1] + (t+6)[1], (ans)[2] = (t+0)[2] + (t+3)[2] + (t +6)[2]); | ||
319 | |||
320 | /* normalize */ | ||
321 | ELL_3V_NORM(ans, ans, norm)(norm = (sqrt((((ans))[0]*((ans))[0] + ((ans))[1]*((ans))[1] + ((ans))[2]*((ans))[2]))), ((ans)[0] = (1.0/norm)*(ans)[0], ( ans)[1] = (1.0/norm)*(ans)[1], (ans)[2] = (1.0/norm)*(ans)[2] )); | ||
322 | |||
323 | return; | ||
324 | } | ||
325 | |||
326 | /* | ||
327 | ******** ell_3m_2d_nullspace_d() | ||
328 | ** | ||
329 | ** the given matrix is assumed to have a nullspace of dimension two. | ||
330 | ** | ||
331 | ** The given nullspace matrix is NOT modified | ||
332 | ** | ||
333 | ** This does NOT use biff | ||
334 | */ | ||
335 | void | ||
336 | ell_3m_2d_nullspace_d(double ans0[3], double ans1[3], const double _n[9]) { | ||
337 | double n[9], tmp[3], norm; | ||
338 | |||
339 | ELL_3M_TRANSPOSE(n, _n)((n)[0] = (_n)[0], (n)[1] = (_n)[3], (n)[2] = (_n)[6], (n)[3] = (_n)[1], (n)[4] = (_n)[4], (n)[5] = (_n)[7], (n)[6] = (_n) [2], (n)[7] = (_n)[5], (n)[8] = (_n)[8]); | ||
340 | _ell_align3_d(n); | ||
341 | ELL_3V_ADD3(tmp, n+0, n+3, n+6)((tmp)[0] = (n+0)[0] + (n+3)[0] + (n+6)[0], (tmp)[1] = (n+0)[ 1] + (n+3)[1] + (n+6)[1], (tmp)[2] = (n+0)[2] + (n+3)[2] + (n +6)[2]); | ||
342 | ELL_3V_NORM(tmp, tmp, norm)(norm = (sqrt((((tmp))[0]*((tmp))[0] + ((tmp))[1]*((tmp))[1] + ((tmp))[2]*((tmp))[2]))), ((tmp)[0] = (1.0/norm)*(tmp)[0], ( tmp)[1] = (1.0/norm)*(tmp)[1], (tmp)[2] = (1.0/norm)*(tmp)[2] )); | ||
343 | |||
344 | /* any two vectors which are perpendicular to the (supposedly 1D) | ||
345 | span of the column vectors span the nullspace */ | ||
346 | ell_3v_perp_d(ans0, tmp); | ||
347 | ELL_3V_NORM(ans0, ans0, norm)(norm = (sqrt((((ans0))[0]*((ans0))[0] + ((ans0))[1]*((ans0)) [1] + ((ans0))[2]*((ans0))[2]))), ((ans0)[0] = (1.0/norm)*(ans0 )[0], (ans0)[1] = (1.0/norm)*(ans0)[1], (ans0)[2] = (1.0/norm )*(ans0)[2])); | ||
348 | ELL_3V_CROSS(ans1, tmp, ans0)((ans1)[0] = (tmp)[1]*(ans0)[2] - (tmp)[2]*(ans0)[1], (ans1)[ 1] = (tmp)[2]*(ans0)[0] - (tmp)[0]*(ans0)[2], (ans1)[2] = (tmp )[0]*(ans0)[1] - (tmp)[1]*(ans0)[0]); | ||
349 | |||
350 | return; | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | ******** ell_3m_eigenvalues_d() | ||
355 | ** | ||
356 | ** finds eigenvalues of given matrix. | ||
357 | ** | ||
358 | ** returns information about the roots according to ellCubeRoot enum, | ||
359 | ** see header for ellCubic for details. | ||
360 | ** | ||
361 | ** given matrix is NOT modified | ||
362 | ** | ||
363 | ** This does NOT use biff | ||
364 | ** | ||
365 | ** Doing the frobenius normalization proved successfull in avoiding the | ||
366 | ** the creating of NaN eigenvalues when the coefficients of the matrix | ||
367 | ** were really large (> 50000). Also, when the matrix norm was really | ||
368 | ** small, the comparison to "epsilon" in ell_cubic mistook three separate | ||
369 | ** roots for a single and a double, with this matrix in particular: | ||
370 | ** 1.7421892 0.0137642 0.0152975 | ||
371 | ** 0.0137642 1.7565432 -0.0062296 | ||
372 | ** 0.0152975 -0.0062296 1.7700019 | ||
373 | ** (actually, this is prior to tenEigensolve's isotropic removal) | ||
374 | ** | ||
375 | ** HEY: tenEigensolve_d and tenEigensolve_f start by removing the | ||
376 | ** isotropic part of the tensor. It may be that that smarts should | ||
377 | ** be migrated here, but GLK is uncertain how it would change the | ||
378 | ** handling of non-symmetric matrices. | ||
379 | */ | ||
380 | int | ||
381 | ell_3m_eigenvalues_d(double _eval[3], const double _m[9], const int newton) { | ||
382 | double A, B, C, scale, frob, m[9], eval[3]; | ||
383 | int roots; | ||
384 | |||
385 | frob = ELL_3M_FROB(_m)(sqrt((((_m)+0)[0]*((_m)+0)[0] + ((_m)+0)[1]*((_m)+0)[1] + (( _m)+0)[2]*((_m)+0)[2]) + (((_m)+3)[0]*((_m)+3)[0] + ((_m)+3)[ 1]*((_m)+3)[1] + ((_m)+3)[2]*((_m)+3)[2]) + (((_m)+6)[0]*((_m )+6)[0] + ((_m)+6)[1]*((_m)+6)[1] + ((_m)+6)[2]*((_m)+6)[2])) ); | ||
386 | scale = frob ? 1.0/frob : 1.0; | ||
387 | ELL_3M_SCALE(m, scale, _m)((((m)+0)[0] = ((scale))*((_m)+0)[0], ((m)+0)[1] = ((scale))* ((_m)+0)[1], ((m)+0)[2] = ((scale))*((_m)+0)[2]), (((m)+3)[0] = ((scale))*((_m)+3)[0], ((m)+3)[1] = ((scale))*((_m)+3)[1], ((m)+3)[2] = ((scale))*((_m)+3)[2]), (((m)+6)[0] = ((scale)) *((_m)+6)[0], ((m)+6)[1] = ((scale))*((_m)+6)[1], ((m)+6)[2] = ((scale))*((_m)+6)[2])); | ||
388 | /* | ||
389 | printf("!%s: m = %g %g %g; %g %g %g; %g %g %g\n", "ell_3m_eigenvalues_d", | ||
390 | m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]); | ||
391 | */ | ||
392 | /* | ||
393 | ** from gordon with mathematica; these are the coefficients of the | ||
394 | ** cubic polynomial in x: det(x*I - M). The full cubic is | ||
395 | ** x^3 + A*x^2 + B*x + C. | ||
396 | */ | ||
397 | A = -m[0] - m[4] - m[8]; | ||
398 | B = m[0]*m[4] - m[3]*m[1] | ||
399 | + m[0]*m[8] - m[6]*m[2] | ||
400 | + m[4]*m[8] - m[7]*m[5]; | ||
401 | C = (m[6]*m[4] - m[3]*m[7])*m[2] | ||
402 | + (m[0]*m[7] - m[6]*m[1])*m[5] | ||
403 | + (m[3]*m[1] - m[0]*m[4])*m[8]; | ||
404 | /* | ||
405 | printf("!%s: A B C = %g %g %g\n", "ell_3m_eigenvalues_d", A, B, C); | ||
406 | */ | ||
407 | roots = ell_cubic(eval, A, B, C, newton); | ||
408 | /* no longer need to sort here */ | ||
409 | ELL_3V_SCALE(_eval, 1.0/scale, eval)((_eval)[0] = (1.0/scale)*(eval)[0], (_eval)[1] = (1.0/scale) *(eval)[1], (_eval)[2] = (1.0/scale)*(eval)[2]); | ||
410 | return roots; | ||
411 | } | ||
412 | |||
413 | void | ||
414 | _ell_3m_evecs_d(double evec[9], double eval[3], int roots, | ||
415 | const double m[9]) { | ||
416 | double n[9], e0=0, e1=0.0, e2=0.0, t /* , tmpv[3] */ ; | ||
417 | |||
418 | ELL_3V_GET(e0, e1, e2, eval)((e0) = (eval)[0], (e1) = (eval)[1], (e2) = (eval)[2]); | ||
419 | /* if (ell_debug) { | ||
420 | printf("ell_3m_evecs_d: numroots = %d\n", numroots); | ||
421 | } */ | ||
422 | |||
423 | /* we form m - lambda*I by doing a memcpy from m, and then | ||
424 | (repeatedly) over-writing the diagonal elements */ | ||
425 | ELL_3M_COPY(n, m)((((n)+0)[0] = ((m)+0)[0], ((n)+0)[1] = ((m)+0)[1], ((n)+0)[2 ] = ((m)+0)[2]), (((n)+3)[0] = ((m)+3)[0], ((n)+3)[1] = ((m)+ 3)[1], ((n)+3)[2] = ((m)+3)[2]), (((n)+6)[0] = ((m)+6)[0], (( n)+6)[1] = ((m)+6)[1], ((n)+6)[2] = ((m)+6)[2])); | ||
426 | switch (roots) { | ||
427 | case ell_cubic_root_three: | ||
428 | /* if (ell_debug) { | ||
429 | printf("ell_3m_evecs_d: evals: %20.15f %20.15f %20.15f\n", | ||
430 | eval[0], eval[1], eval[2]); | ||
431 | } */ | ||
432 | ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0)((n)[0] = (m[0]-e0), (n)[4] = (m[4]-e0), (n)[8] = (m[8]-e0)); | ||
433 | ell_3m_1d_nullspace_d(evec+0, n); | ||
434 | ELL_3M_DIAG_SET(n, m[0]-e1, m[4]-e1, m[8]-e1)((n)[0] = (m[0]-e1), (n)[4] = (m[4]-e1), (n)[8] = (m[8]-e1)); | ||
435 | ell_3m_1d_nullspace_d(evec+3, n); | ||
436 | ELL_3M_DIAG_SET(n, m[0]-e2, m[4]-e2, m[8]-e2)((n)[0] = (m[0]-e2), (n)[4] = (m[4]-e2), (n)[8] = (m[8]-e2)); | ||
437 | ell_3m_1d_nullspace_d(evec+6, n); | ||
438 | _ell_3m_enforce_orthogonality(evec); | ||
439 | _ell_3m_make_right_handed_d(evec); | ||
440 | ELL_3V_SET(eval, e0, e1, e2)((eval)[0] = (e0), (eval)[1] = (e1), (eval)[2] = (e2)); | ||
441 | break; | ||
442 | case ell_cubic_root_single_double: | ||
443 | ELL_SORT3(e0, e1, e2, t)if (e0 > e1) { if (e1 < e2) { if (e0 > e2) { ((t)=(e1 ),(e1)=(e2),(e2)=(t)); } else { ((t)=(e0),(e0)=(e2),(e2)=(e1) ,(e1)=(t)); } } } else { if (e1 > e2) { if (e0 > e2) { ( (t)=(e0),(e0)=(e1),(e1)=(t)); } else { ((t)=(e0),(e0)=(e1),(e1 )=(e2),(e2)=(t)); } } else { ((t)=(e0),(e0)=(e2),(e2)=(t)); } }; | ||
444 | if (e0 > e1) { | ||
445 | /* one big (e0) , two small (e1, e2) : more like a cigar */ | ||
446 | ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0)((n)[0] = (m[0]-e0), (n)[4] = (m[4]-e0), (n)[8] = (m[8]-e0)); | ||
447 | ell_3m_1d_nullspace_d(evec+0, n); | ||
448 | ELL_3M_DIAG_SET(n, m[0]-e1, m[4]-e1, m[8]-e1)((n)[0] = (m[0]-e1), (n)[4] = (m[4]-e1), (n)[8] = (m[8]-e1)); | ||
449 | ell_3m_2d_nullspace_d(evec+3, evec+6, n); | ||
450 | } | ||
451 | else { | ||
452 | /* two big (e0, e1), one small (e2): more like a pancake */ | ||
453 | ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0)((n)[0] = (m[0]-e0), (n)[4] = (m[4]-e0), (n)[8] = (m[8]-e0)); | ||
454 | ell_3m_2d_nullspace_d(evec+0, evec+3, n); | ||
455 | ELL_3M_DIAG_SET(n, m[0]-e2, m[4]-e2, m[8]-e2)((n)[0] = (m[0]-e2), (n)[4] = (m[4]-e2), (n)[8] = (m[8]-e2)); | ||
456 | ell_3m_1d_nullspace_d(evec+6, n); | ||
457 | } | ||
458 | _ell_3m_enforce_orthogonality(evec); | ||
459 | _ell_3m_make_right_handed_d(evec); | ||
460 | ELL_3V_SET(eval, e0, e1, e2)((eval)[0] = (e0), (eval)[1] = (e1), (eval)[2] = (e2)); | ||
461 | break; | ||
462 | case ell_cubic_root_triple: | ||
463 | /* one triple root; use any basis as the eigenvectors */ | ||
464 | ELL_3V_SET(evec+0, 1, 0, 0)((evec+0)[0] = (1), (evec+0)[1] = (0), (evec+0)[2] = (0)); | ||
465 | ELL_3V_SET(evec+3, 0, 1, 0)((evec+3)[0] = (0), (evec+3)[1] = (1), (evec+3)[2] = (0)); | ||
466 | ELL_3V_SET(evec+6, 0, 0, 1)((evec+6)[0] = (0), (evec+6)[1] = (0), (evec+6)[2] = (1)); | ||
467 | ELL_3V_SET(eval, e0, e1, e2)((eval)[0] = (e0), (eval)[1] = (e1), (eval)[2] = (e2)); | ||
468 | break; | ||
469 | case ell_cubic_root_single: | ||
470 | /* only one real root */ | ||
471 | ELL_3M_DIAG_SET(n, m[0]-e0, m[4]-e0, m[8]-e0)((n)[0] = (m[0]-e0), (n)[4] = (m[4]-e0), (n)[8] = (m[8]-e0)); | ||
472 | ell_3m_1d_nullspace_d(evec+0, n); | ||
473 | ELL_3V_SET(evec+3, AIR_NAN, AIR_NAN, AIR_NAN)((evec+3)[0] = ((airFloatQNaN.f)), (evec+3)[1] = ((airFloatQNaN .f)), (evec+3)[2] = ((airFloatQNaN.f))); | ||
474 | ELL_3V_SET(evec+6, AIR_NAN, AIR_NAN, AIR_NAN)((evec+6)[0] = ((airFloatQNaN.f)), (evec+6)[1] = ((airFloatQNaN .f)), (evec+6)[2] = ((airFloatQNaN.f))); | ||
475 | ELL_3V_SET(eval, e0, AIR_NAN, AIR_NAN)((eval)[0] = (e0), (eval)[1] = ((airFloatQNaN.f)), (eval)[2] = ((airFloatQNaN.f))); | ||
476 | break; | ||
477 | } | ||
478 | /* if (ell_debug) { | ||
479 | printf("ell_3m_evecs_d (numroots = %d): evecs: \n", numroots); | ||
480 | ELL_3MV_MUL(tmpv, m, evec[0]); | ||
481 | printf(" (%g:%g): %20.15f %20.15f %20.15f\n", | ||
482 | eval[0], ELL_3V_DOT(evec[0], tmpv), | ||
483 | evec[0][0], evec[0][1], evec[0][2]); | ||
484 | ELL_3MV_MUL(tmpv, m, evec[1]); | ||
485 | printf(" (%g:%g): %20.15f %20.15f %20.15f\n", | ||
486 | eval[1], ELL_3V_DOT(evec[1], tmpv), | ||
487 | evec[1][0], evec[1][1], evec[1][2]); | ||
488 | ELL_3MV_MUL(tmpv, m, evec[2]); | ||
489 | printf(" (%g:%g): %20.15f %20.15f %20.15f\n", | ||
490 | eval[2], ELL_3V_DOT(evec[2], tmpv), | ||
491 | evec[2][0], evec[2][1], evec[2][2]); | ||
492 | } */ | ||
493 | return; | ||
494 | } | ||
495 | |||
496 | /* | ||
497 | ******** ell_3m_eigensolve_d() | ||
498 | ** | ||
499 | ** finds eigenvalues and eigenvectors of given matrix m | ||
500 | ** | ||
501 | ** returns information about the roots according to ellCubeRoot enum, | ||
502 | ** see header for ellCubic for details. When eval[i] is set, evec+3*i | ||
503 | ** is set to a corresponding eigenvector. The eigenvectors are | ||
504 | ** (evec+0)[], (evec+3)[], and (evec+6)[] | ||
505 | ** | ||
506 | ** NOTE: Even in the post-Teem-1.7 switch from column-major to | ||
507 | ** row-major- its still the case that the eigenvectors are at | ||
508 | ** evec+0, evec+3, evec+6: this means that they USED to be the | ||
509 | ** "columns" of the matrix, and NOW they're the rows. | ||
510 | ** | ||
511 | ** The eigenvalues (and associated eigenvectors) are sorted in | ||
512 | ** descending order. | ||
513 | ** | ||
514 | ** This does NOT use biff | ||
515 | */ | ||
516 | int | ||
517 | ell_3m_eigensolve_d(double eval[3], double evec[9], | ||
518 | const double m[9], const int newton) { | ||
519 | int roots; | ||
520 | |||
521 | /* if (ell_debug) { | ||
522 | printf("ell_3m_eigensolve_d: input matrix:\n"); | ||
523 | printf("{{%20.15f,\t%20.15f,\t%20.15f},\n", m[0], m[1], m[2]); | ||
524 | printf(" {%20.15f,\t%20.15f,\t%20.15f},\n", m[3], m[4], m[5]); | ||
525 | printf(" {%20.15f,\t%20.15f,\t%20.15f}};\n",m[6], m[7], m[8]); | ||
526 | } */ | ||
527 | |||
528 | roots = ell_3m_eigenvalues_d(eval, m, newton); | ||
529 | _ell_3m_evecs_d(evec, eval, roots, m); | ||
530 | |||
531 | return roots; | ||
532 | } | ||
533 | |||
534 | /* ____________________________ 3m2sub ____________________________ */ | ||
535 | /* | ||
536 | ******** ell_3m2sub_eigenvalues_d | ||
537 | ** | ||
538 | ** for doing eigensolve of the upper-left 2x2 matrix sub-matrix of a | ||
539 | ** 3x3 matrix. The other entries are assumed to be zero. A 0 root is | ||
540 | ** put last (in eval[2]), possibly in defiance of the usual eigenvalue | ||
541 | ** ordering. | ||
542 | */ | ||
543 | int | ||
544 | ell_3m2sub_eigenvalues_d(double eval[3], const double _m[9]) { | ||
545 | double A, B, m[4], D, Dsq, eps=1.0E-11; | ||
546 | int roots; | ||
547 | /* static const char me[]="ell_3m2sub_eigenvalues_d"; */ | ||
548 | |||
549 | m[0] = _m[0]; | ||
550 | m[1] = _m[1]; | ||
551 | m[2] = _m[3]; | ||
552 | m[3] = _m[4]; | ||
553 | |||
554 | /* cubic characteristic equation is L^3 + A*L^2 + B*L = 0 */ | ||
555 | A = -m[0] - m[3]; | ||
556 | B = m[0]*m[3] - m[1]*m[2]; | ||
557 | Dsq = A*A - 4*B; | ||
558 | /* | ||
559 | fprintf(stderr, "!%s: m = {{%f,%f},{%f,%f}} -> A=%f B=%f Dsq=%.17f %s 0 (%.17f)\n", me, | ||
560 | m[0], m[1], m[2], m[3], A, B, Dsq, | ||
561 | (Dsq > 0 ? ">" : (Dsq < 0 ? "<" : "==")), eps); | ||
562 | fprintf(stderr, "!%s: Dsq = \n", me); | ||
563 | airFPFprintf_d(stderr, Dsq); | ||
564 | fprintf(stderr, "!%s: eps = \n", me); | ||
565 | airFPFprintf_d(stderr, eps); | ||
566 | ell_3m_print_d(stderr, _m); | ||
567 | */ | ||
568 | if (Dsq > eps) { | ||
569 | D = sqrt(Dsq); | ||
570 | eval[0] = (-A + D)/2; | ||
571 | eval[1] = (-A - D)/2; | ||
572 | eval[2] = 0; | ||
573 | roots = ell_cubic_root_three; | ||
574 | } else if (Dsq < -eps) { | ||
575 | /* no quadratic roots; only the implied zero */ | ||
576 | ELL_3V_SET(eval, AIR_NAN, AIR_NAN, 0)((eval)[0] = ((airFloatQNaN.f)), (eval)[1] = ((airFloatQNaN.f )), (eval)[2] = (0)); | ||
577 | roots = ell_cubic_root_single; | ||
578 | } else { | ||
579 | /* a quadratic double root */ | ||
580 | ELL_3V_SET(eval, -A/2, -A/2, 0)((eval)[0] = (-A/2), (eval)[1] = (-A/2), (eval)[2] = (0)); | ||
581 | roots = ell_cubic_root_single_double; | ||
582 | } | ||
583 | /* | ||
584 | fprintf(stderr, "!%s: Dsq=%f, roots=%d (%f %f %f)\n", | ||
585 | me, Dsq, roots, eval[0], eval[1], eval[2]); | ||
586 | */ | ||
587 | return roots; | ||
588 | } | ||
589 | |||
590 | void | ||
591 | _ell_22v_enforce_orthogonality(double uu[2], double _vv[2]) { | ||
592 | double dot, vv[2], len; | ||
593 | |||
594 | dot = ELL_2V_DOT(uu, _vv)((uu)[0]*(_vv)[0] + (uu)[1]*(_vv)[1]); | ||
595 | ELL_2V_SCALE_ADD2(vv, 1, _vv, -dot, uu)((vv)[0] = (1)*(_vv)[0] + (-dot)*(uu)[0], (vv)[1] = (1)*(_vv) [1] + (-dot)*(uu)[1]); | ||
596 | ELL_2V_NORM(_vv, vv, len)(len = (sqrt((((vv))[0]*((vv))[0] + ((vv))[1]*((vv))[1]))), ( (_vv)[0] = (1.0/len)*(vv)[0], (_vv)[1] = (1.0/len)*(vv)[1])); | ||
597 | return; | ||
598 | } | ||
599 | |||
600 | /* | ||
601 | ** NOTE: assumes that eval and roots have come from | ||
602 | ** ell_3m2sub_eigenvalues_d(m) | ||
603 | */ | ||
604 | void | ||
605 | _ell_3m2sub_evecs_d(double evec[9], double eval[3], int roots, | ||
606 | const double m[9]) { | ||
607 | double n[4]; | ||
608 | static const char me[]="_ell_3m2sub_evecs_d"; | ||
609 | |||
610 | if (ell_cubic_root_three == roots) { | ||
611 | /* set off-diagonal entries once */ | ||
612 | n[1] = m[1]; | ||
613 | n[2] = m[3]; | ||
614 | /* find first evec */ | ||
615 | n[0] = m[0] - eval[0]; | ||
616 | n[3] = m[4] - eval[0]; | ||
617 | ell_2m_1d_nullspace_d(evec + 3*0, n); | ||
618 | (evec + 3*0)[2] = 0; | ||
619 | /* find second evec */ | ||
620 | n[0] = m[0] - eval[1]; | ||
621 | n[3] = m[4] - eval[1]; | ||
622 | ell_2m_1d_nullspace_d(evec + 3*1, n); | ||
623 | (evec + 3*1)[2] = 0; | ||
624 | _ell_22v_enforce_orthogonality(evec + 3*0, evec + 3*1); | ||
625 | /* make right-handed */ | ||
626 | ELL_3V_CROSS(evec + 3*2, evec + 3*0, evec + 3*1)((evec + 3*2)[0] = (evec + 3*0)[1]*(evec + 3*1)[2] - (evec + 3 *0)[2]*(evec + 3*1)[1], (evec + 3*2)[1] = (evec + 3*0)[2]*(evec + 3*1)[0] - (evec + 3*0)[0]*(evec + 3*1)[2], (evec + 3*2)[2] = (evec + 3*0)[0]*(evec + 3*1)[1] - (evec + 3*0)[1]*(evec + 3 *1)[0]); | ||
627 | } else if (ell_cubic_root_single_double == roots) { | ||
628 | /* can pick any 2D basis */ | ||
629 | ELL_3V_SET(evec + 3*0, 1, 0, 0)((evec + 3*0)[0] = (1), (evec + 3*0)[1] = (0), (evec + 3*0)[2 ] = (0)); | ||
630 | ELL_3V_SET(evec + 3*1, 0, 1, 0)((evec + 3*1)[0] = (0), (evec + 3*1)[1] = (1), (evec + 3*1)[2 ] = (0)); | ||
631 | ELL_3V_SET(evec + 3*2, 0, 0, 1)((evec + 3*2)[0] = (0), (evec + 3*2)[1] = (0), (evec + 3*2)[2 ] = (1)); | ||
632 | } else { | ||
633 | /* ell_cubic_root_single == roots, if assumptions are met */ | ||
634 | ELL_3V_SET(evec + 3*0, AIR_NAN, AIR_NAN, 0)((evec + 3*0)[0] = ((airFloatQNaN.f)), (evec + 3*0)[1] = ((airFloatQNaN .f)), (evec + 3*0)[2] = (0)); | ||
635 | ELL_3V_SET(evec + 3*1, AIR_NAN, AIR_NAN, 0)((evec + 3*1)[0] = ((airFloatQNaN.f)), (evec + 3*1)[1] = ((airFloatQNaN .f)), (evec + 3*1)[2] = (0)); | ||
636 | ELL_3V_SET(evec + 3*2, 0, 0, 1)((evec + 3*2)[0] = (0), (evec + 3*2)[1] = (0), (evec + 3*2)[2 ] = (1)); | ||
637 | } | ||
638 | if (!ELL_3M_EXISTS(evec)(((((int)(!((((evec) + 0)[0]) - (((evec) + 0)[0]))))) && (((int)(!((((evec) + 0)[1]) - (((evec) + 0)[1]))))) && (((int)(!((((evec) + 0)[2]) - (((evec) + 0)[2])))))) && ((((int)(!((((evec) + 3)[0]) - (((evec) + 3)[0]))))) && (((int)(!((((evec) + 3)[1]) - (((evec) + 3)[1]))))) && (((int)(!((((evec) + 3)[2]) - (((evec) + 3)[2])))))) && ((((int)(!((((evec) + 6)[0]) - (((evec) + 6)[0]))))) && (((int)(!((((evec) + 6)[1]) - (((evec) + 6)[1]))))) && (((int)(!((((evec) + 6)[2]) - (((evec) + 6)[2])))))))) { | ||
639 | fprintf(stderr__stderrp, "%s: given m = \n", me); | ||
640 | ell_3m_print_d(stderr__stderrp, m); | ||
641 | fprintf(stderr__stderrp, "%s: got roots = %s (%d) and evecs = \n", me, | ||
642 | airEnumStr(ell_cubic_root, roots), roots); | ||
643 | ell_3m_print_d(stderr__stderrp, evec); | ||
644 | } | ||
645 | return; | ||
646 | } | ||
647 | |||
648 | int | ||
649 | ell_3m2sub_eigensolve_d(double eval[3], double evec[9], | ||
650 | const double m[9]) { | ||
651 | int roots; | ||
652 | |||
653 | roots = ell_3m2sub_eigenvalues_d(eval, m); | ||
654 | _ell_3m2sub_evecs_d(evec, eval, roots, m); | ||
655 | |||
656 | return roots; | ||
657 | } | ||
658 | |||
659 | /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3m2sub ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ */ | ||
660 | |||
661 | /* | ||
662 | ******** ell_3m_svd_d | ||
663 | ** | ||
664 | ** singular value decomposition: | ||
665 | ** mat = uu * diag(sval) * vv | ||
666 | ** | ||
667 | ** singular values are square roots of eigenvalues of mat * mat^T | ||
668 | ** columns of uu are eigenvectors of mat * mat^T | ||
669 | ** rows of vv are eigenvectors of mat^T * mat | ||
670 | ** | ||
671 | ** returns info about singular values according to ellCubeRoot enum | ||
672 | ** | ||
673 | ** HEY: I think this does the wrong thing when given a symmetric | ||
674 | ** matrix with negative eigenvalues . . . | ||
675 | */ | ||
676 | int | ||
677 | ell_3m_svd_d(double uu[9], double sval[3], double vv[9], | ||
678 | const double mat[9], const int newton) { | ||
679 | double trn[9], msqr[9], eval[3], evec[9]; | ||
680 | int roots; | ||
681 | |||
682 | ELL_3M_TRANSPOSE(trn, mat)((trn)[0] = (mat)[0], (trn)[1] = (mat)[3], (trn)[2] = (mat)[6 ], (trn)[3] = (mat)[1], (trn)[4] = (mat)[4], (trn)[5] = (mat) [7], (trn)[6] = (mat)[2], (trn)[7] = (mat)[5], (trn)[8] = (mat )[8]); | ||
683 | ELL_3M_MUL(msqr, mat, trn)((msqr)[0] = (mat)[0]*(trn)[0] + (mat)[1]*(trn)[3] + (mat)[2] *(trn)[6], (msqr)[1] = (mat)[0]*(trn)[1] + (mat)[1]*(trn)[4] + (mat)[2]*(trn)[7], (msqr)[2] = (mat)[0]*(trn)[2] + (mat)[1]* (trn)[5] + (mat)[2]*(trn)[8], (msqr)[3] = (mat)[3]*(trn)[0] + (mat)[4]*(trn)[3] + (mat)[5]*(trn)[6], (msqr)[4] = (mat)[3]* (trn)[1] + (mat)[4]*(trn)[4] + (mat)[5]*(trn)[7], (msqr)[5] = (mat)[3]*(trn)[2] + (mat)[4]*(trn)[5] + (mat)[5]*(trn)[8], ( msqr)[6] = (mat)[6]*(trn)[0] + (mat)[7]*(trn)[3] + (mat)[8]*( trn)[6], (msqr)[7] = (mat)[6]*(trn)[1] + (mat)[7]*(trn)[4] + ( mat)[8]*(trn)[7], (msqr)[8] = (mat)[6]*(trn)[2] + (mat)[7]*(trn )[5] + (mat)[8]*(trn)[8]); | ||
684 | roots = ell_3m_eigensolve_d(eval, evec, msqr, newton); | ||
685 | sval[0] = sqrt(eval[0]); | ||
686 | sval[1] = sqrt(eval[1]); | ||
687 | sval[2] = sqrt(eval[2]); | ||
688 | ELL_3M_TRANSPOSE(uu, evec)((uu)[0] = (evec)[0], (uu)[1] = (evec)[3], (uu)[2] = (evec)[6 ], (uu)[3] = (evec)[1], (uu)[4] = (evec)[4], (uu)[5] = (evec) [7], (uu)[6] = (evec)[2], (uu)[7] = (evec)[5], (uu)[8] = (evec )[8]); | ||
Within the expansion of the macro 'ELL_3M_TRANSPOSE':
| |||
689 | ELL_3M_MUL(msqr, trn, mat)((msqr)[0] = (trn)[0]*(mat)[0] + (trn)[1]*(mat)[3] + (trn)[2] *(mat)[6], (msqr)[1] = (trn)[0]*(mat)[1] + (trn)[1]*(mat)[4] + (trn)[2]*(mat)[7], (msqr)[2] = (trn)[0]*(mat)[2] + (trn)[1]* (mat)[5] + (trn)[2]*(mat)[8], (msqr)[3] = (trn)[3]*(mat)[0] + (trn)[4]*(mat)[3] + (trn)[5]*(mat)[6], (msqr)[4] = (trn)[3]* (mat)[1] + (trn)[4]*(mat)[4] + (trn)[5]*(mat)[7], (msqr)[5] = (trn)[3]*(mat)[2] + (trn)[4]*(mat)[5] + (trn)[5]*(mat)[8], ( msqr)[6] = (trn)[6]*(mat)[0] + (trn)[7]*(mat)[3] + (trn)[8]*( mat)[6], (msqr)[7] = (trn)[6]*(mat)[1] + (trn)[7]*(mat)[4] + ( trn)[8]*(mat)[7], (msqr)[8] = (trn)[6]*(mat)[2] + (trn)[7]*(mat )[5] + (trn)[8]*(mat)[8]); | ||
690 | _ell_3m_evecs_d(vv, eval, roots, msqr); | ||
691 | |||
692 | return roots; | ||
693 | } | ||
694 | |||
695 | /* | ||
696 | ** NOTE: profiling showed that about a quarter of the execution time of | ||
697 | ** ell_6ms_eigensolve_d() is spent here; so reconsider its need and | ||
698 | ** implementation . . . (fabs vs. AIR_ABS() made no difference) | ||
699 | */ | ||
700 | static void | ||
701 | _maxI_sum_find(unsigned int maxI[2], double *sumon, double *sumoff, | ||
702 | double mat[6][6]) { | ||
703 | double maxm, tmp; | ||
704 | unsigned int rrI, ccI; | ||
705 | |||
706 | /* we hope that all these loops are unrolled by the optimizer */ | ||
707 | *sumon = *sumoff = 0.0; | ||
708 | for (rrI=0; rrI<6; rrI++) { | ||
709 | *sumon += AIR_ABS(mat[rrI][rrI])((mat[rrI][rrI]) > 0.0f ? (mat[rrI][rrI]) : -(mat[rrI][rrI ])); | ||
710 | } | ||
711 | maxm = -1; | ||
712 | maxI[0] = maxI[1] = 0; | ||
713 | for (rrI=0; rrI<5; rrI++) { | ||
714 | for (ccI=rrI+1; ccI<6; ccI++) { | ||
715 | tmp = AIR_ABS(mat[rrI][ccI])((mat[rrI][ccI]) > 0.0f ? (mat[rrI][ccI]) : -(mat[rrI][ccI ])); | ||
716 | *sumoff += tmp; | ||
717 | if (tmp > maxm) { | ||
718 | maxm = tmp; | ||
719 | maxI[0] = rrI; | ||
720 | maxI[1] = ccI; | ||
721 | } | ||
722 | } | ||
723 | } | ||
724 | |||
725 | /* | ||
726 | if (1) { | ||
727 | double nrm, trc; | ||
728 | nrm = trc = 0; | ||
729 | for (rrI=0; rrI<6; rrI++) { | ||
730 | trc += mat[rrI][rrI]; | ||
731 | nrm += mat[rrI][rrI]*mat[rrI][rrI]; | ||
732 | } | ||
733 | for (rrI=0; rrI<5; rrI++) { | ||
734 | for (ccI=rrI+1; ccI<6; ccI++) { | ||
735 | nrm += 2*mat[rrI][ccI]*mat[rrI][ccI]; | ||
736 | } | ||
737 | } | ||
738 | fprintf(stderr, "---------------- invars = %g %g\n", trc, nrm); | ||
739 | } | ||
740 | */ | ||
741 | |||
742 | return; | ||
743 | } | ||
744 | |||
745 | static int | ||
746 | _compar(const void *A_void, const void *B_void) { | ||
747 | const double *A, *B; | ||
748 | A = AIR_CAST(const double *, A_void)((const double *)(A_void)); | ||
749 | B = AIR_CAST(const double *, B_void)((const double *)(B_void)); | ||
750 | return (A[0] < B[0] ? 1 : (A[0] > B[0] ? -1 : 0)); | ||
751 | } | ||
752 | |||
753 | /* | ||
754 | ******* ell_6ms_eigensolve_d | ||
755 | ** | ||
756 | ** uses Jacobi iterations to find eigensystem of 6x6 symmetric matrix, | ||
757 | ** given in sym[21], to within convergence threshold eps. Puts | ||
758 | ** eigenvalues, in descending order, in eval[6], and corresponding | ||
759 | ** eigenvectors in _evec+0, _evec+6, . . ., _evec+30. NOTE: you can | ||
760 | ** pass a NULL _evec if eigenvectors aren't needed. | ||
761 | ** | ||
762 | ** does NOT use biff | ||
763 | */ | ||
764 | int | ||
765 | ell_6ms_eigensolve_d(double eval[6], double _evec[36], | ||
766 | const double sym[21], const double eps) { | ||
767 | /* char me[]="ell_6ms_eigensolve_d"; */ | ||
768 | double mat[2][6][6], evec[2][6][6], sumon, sumoff, evtmp[12]; | ||
769 | unsigned int cur, rrI, ccI, maxI[2], iter; | ||
770 | |||
771 | if (!( eval && sym && eps >= 0 )) { | ||
772 | return 1; | ||
773 | } | ||
774 | /* copy symmetric matrix sym[] into upper tris of mat[0][][] & mat[1][][] */ | ||
775 | mat[0][0][0] = sym[ 0]; | ||
776 | mat[0][0][1] = sym[ 1]; | ||
777 | mat[0][0][2] = sym[ 2]; | ||
778 | mat[0][0][3] = sym[ 3]; | ||
779 | mat[0][0][4] = sym[ 4]; | ||
780 | mat[0][0][5] = sym[ 5]; | ||
781 | mat[0][1][1] = sym[ 6]; | ||
782 | mat[0][1][2] = sym[ 7]; | ||
783 | mat[0][1][3] = sym[ 8]; | ||
784 | mat[0][1][4] = sym[ 9]; | ||
785 | mat[0][1][5] = sym[10]; | ||
786 | mat[0][2][2] = sym[11]; | ||
787 | mat[0][2][3] = sym[12]; | ||
788 | mat[0][2][4] = sym[13]; | ||
789 | mat[0][2][5] = sym[14]; | ||
790 | mat[0][3][3] = sym[15]; | ||
791 | mat[0][3][4] = sym[16]; | ||
792 | mat[0][3][5] = sym[17]; | ||
793 | mat[0][4][4] = sym[18]; | ||
794 | mat[0][4][5] = sym[19]; | ||
795 | mat[0][5][5] = sym[20]; | ||
796 | if (_evec) { | ||
797 | /* initialize evec[0]; */ | ||
798 | for (rrI=0; rrI<6; rrI++) { | ||
799 | for (ccI=0; ccI<6; ccI++) { | ||
800 | evec[0][ccI][rrI] = (rrI == ccI); | ||
801 | } | ||
802 | } | ||
803 | } | ||
804 | /* | ||
805 | fprintf(stderr, "!%s(INIT): m = [", me); | ||
806 | for (rrI=0; rrI<6; rrI++) { | ||
807 | for (ccI=0; ccI<6; ccI++) { | ||
808 | fprintf(stderr, "%f%s", | ||
809 | (rrI <= ccI ? mat[0][rrI][ccI] : mat[0][ccI][rrI]), | ||
810 | ccI<5 ? "," : (rrI<5 ? ";" : "]")); | ||
811 | } | ||
812 | fprintf(stderr, "\n"); | ||
813 | } | ||
814 | */ | ||
815 | maxI[0] = maxI[1] = UINT_MAX(2147483647 *2U +1U); /* quiet warnings about using maxI unset */ | ||
816 | _maxI_sum_find(maxI, &sumon, &sumoff, mat[0]); | ||
817 | cur = 1; /* fake out anticipating first line of loop */ | ||
818 | iter = 0; | ||
819 | while (sumoff/sumon > eps) { | ||
820 | double th, tt, cc, ss; | ||
821 | const unsigned int P = maxI[0]; | ||
822 | const unsigned int Q = maxI[1]; | ||
823 | //make sure that P and Q are within the bounds for mat[2][6][6] | ||
824 | if(P >=6 || Q >= 6){ | ||
825 | break; | ||
826 | } | ||
827 | /* | ||
828 | fprintf(stderr, "!%s(%u): sumoff/sumon = %g/%g = %g > %g\n", me, iter, | ||
829 | sumoff, sumon, sumoff/sumon, eps); | ||
830 | */ | ||
831 | cur = 1 - cur; | ||
832 | |||
833 | th = (mat[cur][Q][Q] - mat[cur][P][P])/(2*mat[cur][P][Q]); | ||
834 | tt = (th > 0 ? +1 : -1)/(AIR_ABS(th)((th) > 0.0f ? (th) : -(th)) + sqrt(th*th + 1)); | ||
835 | cc = 1/sqrt(tt*tt + 1); | ||
836 | ss = cc*tt; | ||
837 | /* | ||
838 | fprintf(stderr, "!%s(%u): maxI = (P,Q) = (%u,%u) --> ss=%f, cc=%f\n", | ||
839 | me, iter, P, Q, ss, cc); | ||
840 | fprintf(stderr, " r = ["); | ||
841 | for (rrI=0; rrI<6; rrI++) { | ||
842 | for (ccI=0; ccI<6; ccI++) { | ||
843 | fprintf(stderr, "%g%s", | ||
844 | (rrI == ccI | ||
845 | ? (rrI == P || rrI == Q ? cc : 1.0) | ||
846 | : (rrI == P && ccI == Q | ||
847 | ? ss | ||
848 | : (rrI == Q && ccI == P | ||
849 | ? -ss | ||
850 | : 0))), | ||
851 | ccI<5 ? "," : (rrI<5 ? ";" : "]")); | ||
852 | } | ||
853 | fprintf(stderr, "\n"); | ||
854 | } | ||
855 | */ | ||
856 | /* initialize by copying whole matrix */ | ||
857 | for (rrI=0; rrI<6; rrI++) { | ||
858 | for (ccI=rrI; ccI<6; ccI++) { | ||
859 | mat[1-cur][rrI][ccI] = mat[cur][rrI][ccI]; | ||
860 | } | ||
861 | } | ||
862 | /* perform Jacobi rotation */ | ||
863 | for (rrI=0; rrI<P; rrI++) { | ||
864 | mat[1-cur][rrI][P] = cc*mat[cur][rrI][P] - ss*mat[cur][rrI][Q]; | ||
865 | } | ||
866 | for (ccI=P+1; ccI<6; ccI++) { | ||
867 | mat[1-cur][P][ccI] = cc*mat[cur][P][ccI] - ss*(Q <= ccI | ||
868 | ? mat[cur][Q][ccI] | ||
869 | : mat[cur][ccI][Q]); | ||
870 | } | ||
871 | for (rrI=0; rrI<Q; rrI++) { | ||
872 | mat[1-cur][rrI][Q] = ss*(rrI <= P | ||
873 | ? mat[cur][rrI][P] | ||
874 | : mat[cur][P][rrI]) + cc*mat[cur][rrI][Q]; | ||
875 | } | ||
876 | for (ccI=Q+1; ccI<6; ccI++) { | ||
877 | mat[1-cur][Q][ccI] = ss*mat[cur][P][ccI] + cc*mat[cur][Q][ccI]; | ||
878 | } | ||
879 | /* set special entries */ | ||
880 | mat[1-cur][P][P] = mat[cur][P][P] - tt*mat[cur][P][Q]; | ||
881 | mat[1-cur][Q][Q] = mat[cur][Q][Q] + tt*mat[cur][P][Q]; | ||
882 | mat[1-cur][P][Q] = 0.0; | ||
883 | if (_evec) { | ||
884 | /* NOTE: the eigenvectors use transpose of indexing of mat */ | ||
885 | /* start by copying all */ | ||
886 | for (rrI=0; rrI<6; rrI++) { | ||
887 | for (ccI=0; ccI<6; ccI++) { | ||
888 | evec[1-cur][ccI][rrI] = evec[cur][ccI][rrI]; | ||
889 | } | ||
890 | } | ||
891 | for (rrI=0; rrI<6; rrI++) { | ||
892 | evec[1-cur][P][rrI] = cc*evec[cur][P][rrI] - ss*evec[cur][Q][rrI]; | ||
893 | evec[1-cur][Q][rrI] = ss*evec[cur][P][rrI] + cc*evec[cur][Q][rrI]; | ||
894 | } | ||
895 | } | ||
896 | |||
897 | _maxI_sum_find(maxI, &sumon, &sumoff, mat[1-cur]); | ||
898 | |||
899 | /* | ||
900 | fprintf(stderr, "!%s(%u): m = [", me, iter); | ||
901 | for (rrI=0; rrI<6; rrI++) { | ||
902 | for (ccI=0; ccI<6; ccI++) { | ||
903 | fprintf(stderr, "%f%s", | ||
904 | (rrI <= ccI ? mat[1-cur][rrI][ccI] : mat[1-cur][ccI][rrI]), | ||
905 | ccI<5 ? "," : (rrI<5 ? ";" : "]")); | ||
906 | } | ||
907 | fprintf(stderr, "\n"); | ||
908 | } | ||
909 | */ | ||
910 | iter++; | ||
911 | } | ||
912 | /* 1-cur is index of final solution */ | ||
913 | |||
914 | /* sort evals */ | ||
915 | for (ccI=0; ccI<6; ccI++) { | ||
916 | evtmp[0 + 2*ccI] = mat[1-cur][ccI][ccI]; | ||
917 | evtmp[1 + 2*ccI] = ccI; | ||
918 | } | ||
919 | qsort(evtmp, 6, 2*sizeof(double), _compar); | ||
920 | |||
921 | /* copy out solution */ | ||
922 | for (ccI=0; ccI<6; ccI++) { | ||
923 | eval[ccI] = evtmp[0 + 2*ccI]; | ||
924 | if (_evec) { | ||
925 | unsigned eeI; | ||
926 | for (rrI=0; rrI<6; rrI++) { | ||
927 | eeI = AIR_CAST(unsigned int, evtmp[1 + 2*ccI])((unsigned int)(evtmp[1 + 2*ccI])); | ||
928 | _evec[rrI + 6*ccI] = evec[1-cur][eeI][rrI]; | ||
929 | } | ||
930 | } | ||
931 | } | ||
932 | |||
933 | return 0; | ||
934 | } |