File: | src/echo/sqd.c |
Location: | line 368, column 9 |
Description: | Value stored to 'Vmax' is never read |
1 | /* |
2 | Teem: Tools to process and visualize scientific data and images . |
3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 | |
7 | This library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public License |
9 | (LGPL) as published by the Free Software Foundation; either |
10 | version 2.1 of the License, or (at your option) any later version. |
11 | The terms of redistributing and/or modifying this software also |
12 | include exceptions to the LGPL that facilitate static linking. |
13 | |
14 | This library is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 | Lesser General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU Lesser General Public License |
20 | along with this library; if not, write to Free Software Foundation, Inc., |
21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 | */ |
23 | |
24 | #include "echo.h" |
25 | #include "privateEcho.h" |
26 | |
27 | echoPos_t |
28 | _echo_SuperquadX_v(echoPos_t x, echoPos_t y, echoPos_t z, |
29 | echoPos_t A, echoPos_t B) { |
30 | echoPos_t xxb, yya, zza; |
31 | |
32 | xxb = pow(x*x, 1/B); yya = pow(y*y, 1/A); zza = pow(z*z, 1/A); |
33 | return pow(yya + zza, A/B) + xxb - 1; |
34 | } |
35 | |
36 | echoPos_t |
37 | _echo_SuperquadY_v(echoPos_t x, echoPos_t y, echoPos_t z, |
38 | echoPos_t A, echoPos_t B) { |
39 | echoPos_t xxa, yyb, zza; |
40 | |
41 | xxa = pow(x*x, 1/A); yyb = pow(y*y, 1/B); zza = pow(z*z, 1/A); |
42 | return pow(xxa + zza, A/B) + yyb - 1; |
43 | } |
44 | |
45 | echoPos_t |
46 | _echo_SuperquadZ_v(echoPos_t x, echoPos_t y, echoPos_t z, |
47 | echoPos_t A, echoPos_t B) { |
48 | echoPos_t xxa, yya, zzb; |
49 | |
50 | xxa = pow(x*x, 1/A); yya = pow(y*y, 1/A); zzb = pow(z*z, 1/B); |
51 | return pow(xxa + yya, A/B) + zzb - 1; |
52 | } |
53 | |
54 | /* -------------------------------------------------------- */ |
55 | |
56 | echoPos_t |
57 | _echo_SuperquadX_vg(echoPos_t grad[3], |
58 | echoPos_t x, echoPos_t y, echoPos_t z, |
59 | echoPos_t A, echoPos_t B) { |
60 | echoPos_t R, xxb, yya, zza; |
61 | |
62 | xxb = pow(x*x, 1/B); yya = pow(y*y, 1/A); zza = pow(z*z, 1/A); |
63 | R = pow(yya + zza, (A/B)-1); |
64 | ELL_3V_SET(grad, 2*xxb/(B*x), 2*R*yya/(B*y), 2*R*zza/(B*z))((grad)[0] = (2*xxb/(B*x)), (grad)[1] = (2*R*yya/(B*y)), (grad )[2] = (2*R*zza/(B*z))); |
65 | return pow(yya + zza, A/B) + xxb - 1; |
66 | } |
67 | |
68 | echoPos_t |
69 | _echo_SuperquadY_vg(echoPos_t grad[3], |
70 | echoPos_t x, echoPos_t y, echoPos_t z, |
71 | echoPos_t A, echoPos_t B) { |
72 | echoPos_t R, xxa, yyb, zza; |
73 | |
74 | xxa = pow(x*x, 1/A); yyb = pow(y*y, 1/B); zza = pow(z*z, 1/A); |
75 | R = pow(xxa + zza, (A/B)-1); |
76 | ELL_3V_SET(grad, 2*R*xxa/(B*x), 2*yyb/(B*y), 2*R*zza/(B*z))((grad)[0] = (2*R*xxa/(B*x)), (grad)[1] = (2*yyb/(B*y)), (grad )[2] = (2*R*zza/(B*z))); |
77 | return pow(xxa + zza, A/B) + yyb - 1; |
78 | } |
79 | |
80 | echoPos_t |
81 | _echo_SuperquadZ_vg(echoPos_t grad[3], |
82 | echoPos_t x, echoPos_t y, echoPos_t z, |
83 | echoPos_t A, echoPos_t B) { |
84 | echoPos_t R, xxa, yya, zzb; |
85 | |
86 | xxa = pow(x*x, 1/A); yya = pow(y*y, 1/A); zzb = pow(z*z, 1/B); |
87 | R = pow(xxa + yya, (A/B)-1); |
88 | ELL_3V_SET(grad, 2*R*xxa/(B*x), 2*R*yya/(B*y), 2*zzb/(B*z))((grad)[0] = (2*R*xxa/(B*x)), (grad)[1] = (2*R*yya/(B*y)), (grad )[2] = (2*zzb/(B*z))); |
89 | return pow(xxa + yya, A/B) + zzb - 1; |
90 | } |
91 | |
92 | /* -------------------------------------------------------- */ |
93 | |
94 | echoPos_t |
95 | _echo_SuperquadX_lvg(echoPos_t grad[3], |
96 | echoPos_t x, echoPos_t y, echoPos_t z, |
97 | echoPos_t A, echoPos_t B) { |
98 | echoPos_t R, xxb, yya, zza, larg; |
99 | |
100 | echoPos_t ret; |
101 | |
102 | xxb = pow(x*x, 1/B); yya = pow(y*y, 1/A); zza = pow(z*z, 1/A); |
103 | R = pow(yya + zza, 1-(A/B))*xxb; |
104 | ELL_3V_SET(grad,((grad)[0] = (2/(B*x*(1 + pow(yya + zza, A/B)/xxb))), (grad)[ 1] = (2*yya/(B*y*(yya + zza + R))), (grad)[2] = (2*zza/(B*z*( yya + zza + R)))) |
105 | 2/(B*x*(1 + pow(yya + zza, A/B)/xxb)),((grad)[0] = (2/(B*x*(1 + pow(yya + zza, A/B)/xxb))), (grad)[ 1] = (2*yya/(B*y*(yya + zza + R))), (grad)[2] = (2*zza/(B*z*( yya + zza + R)))) |
106 | 2*yya/(B*y*(yya + zza + R)),((grad)[0] = (2/(B*x*(1 + pow(yya + zza, A/B)/xxb))), (grad)[ 1] = (2*yya/(B*y*(yya + zza + R))), (grad)[2] = (2*zza/(B*z*( yya + zza + R)))) |
107 | 2*zza/(B*z*(yya + zza + R)))((grad)[0] = (2/(B*x*(1 + pow(yya + zza, A/B)/xxb))), (grad)[ 1] = (2*yya/(B*y*(yya + zza + R))), (grad)[2] = (2*zza/(B*z*( yya + zza + R)))); |
108 | larg = pow(yya + zza, A/B) + xxb; |
109 | ret= larg > 0 ? log(larg) : ECHO_POS_MIN(-1.7976931348623157e+308); |
110 | /* |
111 | if (!( AIR_EXISTS(grad[0]) && AIR_EXISTS(grad[1]) && AIR_EXISTS(grad[2]) )) { |
112 | fprintf(stderr, "_echo_SuperquadX_lvg: PANIC\n"); |
113 | fprintf(stderr, "x = %g, y = %g, z = %g, A = %g, B = %g\n", |
114 | x, y, z, A, B); |
115 | fprintf(stderr, "pow(%g * %g = %g, 1/%g = %g) = %g\n", |
116 | x, x, x*x, B, 1/B, pow(x*x, 1/B)); |
117 | fprintf(stderr, "xxb = %g, yya = %g, zza = %g\n", |
118 | xxb, yya, zza); |
119 | fprintf(stderr, "R: pow(%g + %g = %g, 1-(%g/%g = %g) = %g) = %g*%g = %g\n", |
120 | yya, zza, yya + zza, |
121 | A, B, A/B, 1-(A/B), |
122 | pow(yya + zza, 1-(A/B)), xxb, |
123 | pow(yya + zza, 1-(A/B))*xxb); |
124 | fprintf(stderr, "grad[0]: 2/(%g * %g * (1 + pow(%g + %g = %g, %g/%g = %g)/%g = %g)) = %g\n", |
125 | B, x, yya, zza, yya+zza, A, B, A/B, xxb, |
126 | pow(yya + zza, A/B)/xxb, grad[0]); |
127 | fprintf(stderr, "grad[1]: 2*%g/(%g*%g*(%g + %g + %g = %g) = %g) = %g\n", |
128 | yya, B, y, yya, zza, R, yya + zza + R, |
129 | B*y*(yya + zza + R), |
130 | 2*yya/(B*y*(yya + zza + R))); |
131 | |
132 | fprintf(stderr, "log(pow(%g + %g = %g, %g) = %g + %g) = %g\n", |
133 | yya, zza, yya+zza, A/B, pow(yya + zza, A/B), xxb, ret); |
134 | fprintf(stderr, "grad = %g %g %g\n", grad[0], grad[1], grad[2]); |
135 | fprintf(stderr, "\n----------\n\n"); |
136 | } |
137 | */ |
138 | return ret; |
139 | } |
140 | |
141 | echoPos_t |
142 | _echo_SuperquadY_lvg(echoPos_t grad[3], |
143 | echoPos_t x, echoPos_t y, echoPos_t z, |
144 | echoPos_t A, echoPos_t B) { |
145 | echoPos_t R, xxa, yyb, zza, larg; |
146 | |
147 | xxa = pow(x*x, 1/A); yyb = pow(y*y, 1/B); zza = pow(z*z, 1/A); |
148 | R = pow(xxa + zza, 1-(A/B))*yyb; |
149 | ELL_3V_SET(grad,((grad)[0] = (2*xxa/(B*x*(xxa + zza + R))), (grad)[1] = (2/(B *y*(1 + pow(xxa + zza, A/B)/yyb))), (grad)[2] = (2*zza/(B*z*( xxa + zza + R)))) |
150 | 2*xxa/(B*x*(xxa + zza + R)),((grad)[0] = (2*xxa/(B*x*(xxa + zza + R))), (grad)[1] = (2/(B *y*(1 + pow(xxa + zza, A/B)/yyb))), (grad)[2] = (2*zza/(B*z*( xxa + zza + R)))) |
151 | 2/(B*y*(1 + pow(xxa + zza, A/B)/yyb)),((grad)[0] = (2*xxa/(B*x*(xxa + zza + R))), (grad)[1] = (2/(B *y*(1 + pow(xxa + zza, A/B)/yyb))), (grad)[2] = (2*zza/(B*z*( xxa + zza + R)))) |
152 | 2*zza/(B*z*(xxa + zza + R)))((grad)[0] = (2*xxa/(B*x*(xxa + zza + R))), (grad)[1] = (2/(B *y*(1 + pow(xxa + zza, A/B)/yyb))), (grad)[2] = (2*zza/(B*z*( xxa + zza + R)))); |
153 | larg = pow(xxa + zza, A/B) + yyb; |
154 | return larg > 0 ? log(larg) : ECHO_POS_MIN(-1.7976931348623157e+308); |
155 | } |
156 | |
157 | echoPos_t |
158 | _echo_SuperquadZ_lvg(echoPos_t grad[3], |
159 | echoPos_t x, echoPos_t y, echoPos_t z, |
160 | echoPos_t A, echoPos_t B) { |
161 | echoPos_t R, xxa, yya, zzb, larg; |
162 | |
163 | echoPos_t ret; |
164 | |
165 | xxa = pow(x*x, 1/A); yya = pow(y*y, 1/A); zzb = pow(z*z, 1/B); |
166 | R = pow(xxa + yya, 1-(A/B))*zzb; |
167 | ELL_3V_SET(grad,((grad)[0] = (2*xxa/(B*x*(xxa + yya + R))), (grad)[1] = (2*yya /(B*y*(xxa + yya + R))), (grad)[2] = (2/(B*z*(1 + pow(xxa + yya , A/B)/zzb)))) |
168 | 2*xxa/(B*x*(xxa + yya + R)),((grad)[0] = (2*xxa/(B*x*(xxa + yya + R))), (grad)[1] = (2*yya /(B*y*(xxa + yya + R))), (grad)[2] = (2/(B*z*(1 + pow(xxa + yya , A/B)/zzb)))) |
169 | 2*yya/(B*y*(xxa + yya + R)),((grad)[0] = (2*xxa/(B*x*(xxa + yya + R))), (grad)[1] = (2*yya /(B*y*(xxa + yya + R))), (grad)[2] = (2/(B*z*(1 + pow(xxa + yya , A/B)/zzb)))) |
170 | 2/(B*z*(1 + pow(xxa + yya, A/B)/zzb)))((grad)[0] = (2*xxa/(B*x*(xxa + yya + R))), (grad)[1] = (2*yya /(B*y*(xxa + yya + R))), (grad)[2] = (2/(B*z*(1 + pow(xxa + yya , A/B)/zzb)))); |
171 | larg = pow(xxa + yya, A/B) + zzb; |
172 | |
173 | ret = larg > 0 ? log(larg) : ECHO_POS_MIN(-1.7976931348623157e+308); |
174 | /* |
175 | if (!AIR_EXISTS(ret)) { |
176 | fprintf(stderr, "_echo_SuperquadZ_lvg: PANIC\n"); |
177 | fprintf(stderr, "x = %g, y = %g, z = %g, A = %g, B = %g\n", |
178 | x, y, z, A, B); |
179 | fprintf(stderr, "pow(%g*%g = %g, %g) = %g\n", |
180 | x, x, x*x, 1/A, xxa); |
181 | fprintf(stderr, "pow(%g*%g = %g, %g) = %g\n", |
182 | y, y, y*y, 1/A, yya); |
183 | fprintf(stderr, "log(pow(%g, %g) = %g + %g) = %g\n", |
184 | xxa + yya, A/B, pow(xxa + yya, A/B), zzb, ret); |
185 | exit(0); |
186 | } |
187 | */ |
188 | return ret; |
189 | } |
190 | |
191 | /* -------------------------------------------------------- */ |
192 | |
193 | int |
194 | _echoRayIntx_Superquad(RAYINTX_ARGS(Superquad)echoIntx *intx, echoRay *ray, echoSuperquad *obj, echoRTParm * parm, echoThreadState *tstate) { |
195 | char me[]="_echoRayIntx_Superquad"; |
196 | echoPos_t TT=0, Tmin, Tmax, t0, t1, t2, t3, v1, v2, diff, tol, |
197 | saveTmin, Vmin, Vmax, VV=0, dV, dVmin, dVmax, tmp, |
198 | (*v)(echoPos_t, echoPos_t, echoPos_t, |
199 | echoPos_t, echoPos_t), |
200 | (*vg)(echoPos_t[3], |
201 | echoPos_t, echoPos_t, echoPos_t, |
202 | echoPos_t, echoPos_t), |
203 | (*lvg)(echoPos_t[3], |
204 | echoPos_t, echoPos_t, echoPos_t, |
205 | echoPos_t, echoPos_t), |
206 | from[3], grad[3], pos[3]; /* these two used only by macros */ |
207 | int iter; |
208 | |
209 | if (!_echoRayIntx_CubeSolid(&Tmin, &Tmax, |
210 | -1-2*ECHO_EPSILON0.00005, 1+2*ECHO_EPSILON0.00005, |
211 | -1-2*ECHO_EPSILON0.00005, 1+2*ECHO_EPSILON0.00005, |
212 | -1-2*ECHO_EPSILON0.00005, 1+2*ECHO_EPSILON0.00005, ray)) { |
213 | return AIR_FALSE0; |
214 | } |
215 | switch(obj->axis) { |
216 | case 0: |
217 | v = _echo_SuperquadX_v; |
218 | vg = _echo_SuperquadX_vg; |
219 | lvg = _echo_SuperquadX_lvg; |
220 | break; |
221 | case 1: |
222 | v = _echo_SuperquadY_v; |
223 | vg = _echo_SuperquadY_vg; |
224 | lvg = _echo_SuperquadY_lvg; |
225 | break; |
226 | case 2: default: |
227 | v = _echo_SuperquadZ_v; |
228 | vg = _echo_SuperquadZ_vg; |
229 | lvg = _echo_SuperquadZ_lvg; |
230 | break; |
231 | } |
232 | if (tstate->verbose) { |
233 | fprintf(stderr__stderrp, "%s%s: Tmin, Tmax = %g, %g, ax = %d\n", |
234 | _echoDot(tstate->depth), me, Tmin, Tmax, obj->axis); |
235 | } |
236 | |
237 | #define VAL(TT)(((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1 ] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*( from)[2] + ((TT))*(ray->dir)[2]), v(pos[0], pos[1], pos[2] , obj->A, obj->B)) \ |
238 | (ELL_3V_SCALE_ADD2(pos, 1, from, (TT), ray->dir)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]), \ |
239 | v(pos[0], pos[1], pos[2], obj->A, obj->B)) |
240 | |
241 | #define VALGRAD(VV, DV, TT)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]); (VV) = vg(grad, pos[0], pos[ 1], pos[2], obj->A, obj->B); (DV) = ((grad)[0]*(ray-> dir)[0] + (grad)[1]*(ray->dir)[1] + (grad)[2]*(ray->dir )[2]) \ |
242 | ELL_3V_SCALE_ADD2(pos, 1, from, (TT), ray->dir)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]); \ |
243 | (VV) = vg(grad, pos[0], pos[1], pos[2], obj->A, obj->B); \ |
244 | (DV) = ELL_3V_DOT(grad, ray->dir)((grad)[0]*(ray->dir)[0] + (grad)[1]*(ray->dir)[1] + (grad )[2]*(ray->dir)[2]) |
245 | |
246 | #define LVALGRAD(VV, DV, TT)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]); (VV) = lvg(grad, pos[0], pos [1], pos[2], obj->A, obj->B); (DV) = ((grad)[0]*(ray-> dir)[0] + (grad)[1]*(ray->dir)[1] + (grad)[2]*(ray->dir )[2]) \ |
247 | ELL_3V_SCALE_ADD2(pos, 1, from, (TT), ray->dir)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]); \ |
248 | (VV) = lvg(grad, pos[0], pos[1], pos[2], obj->A, obj->B); \ |
249 | (DV) = ELL_3V_DOT(grad, ray->dir)((grad)[0]*(ray->dir)[0] + (grad)[1]*(ray->dir)[1] + (grad )[2]*(ray->dir)[2]) |
250 | |
251 | #define RR0.61803399 0.61803399 |
252 | #define CC(1.0-0.61803399) (1.0-RR0.61803399) |
253 | #define SHIFT3(a,b,c,d)(a)=(b); (b)=(c); (c)=(d) (a)=(b); (b)=(c); (c)=(d) |
254 | #define SHIFT2(a,b,c)(a)=(b); (b)=(c) (a)=(b); (b)=(c) |
255 | |
256 | /* testing */ |
257 | ELL_3V_SCALE_ADD2(from, 1, ray->from, Tmin, ray->dir)((from)[0] = (1)*(ray->from)[0] + (Tmin)*(ray->dir)[0], (from)[1] = (1)*(ray->from)[1] + (Tmin)*(ray->dir)[1], (from)[2] = (1)*(ray->from)[2] + (Tmin)*(ray->dir)[2]); |
258 | saveTmin = Tmin; |
259 | Tmin = 0; |
260 | Tmax -= saveTmin; |
261 | /* |
262 | ELL_3V_COPY(from, ray->from); |
263 | saveTmin = 0; |
264 | */ |
265 | |
266 | /* evaluate value and derivatives at Tmin and Tmax */ |
267 | VALGRAD(Vmin, dVmin, Tmin)((pos)[0] = (1)*(from)[0] + ((Tmin))*(ray->dir)[0], (pos)[ 1] = (1)*(from)[1] + ((Tmin))*(ray->dir)[1], (pos)[2] = (1 )*(from)[2] + ((Tmin))*(ray->dir)[2]); (Vmin) = vg(grad, pos [0], pos[1], pos[2], obj->A, obj->B); (dVmin) = ((grad) [0]*(ray->dir)[0] + (grad)[1]*(ray->dir)[1] + (grad)[2] *(ray->dir)[2]); |
268 | VALGRAD(Vmax, dVmax, Tmax)((pos)[0] = (1)*(from)[0] + ((Tmax))*(ray->dir)[0], (pos)[ 1] = (1)*(from)[1] + ((Tmax))*(ray->dir)[1], (pos)[2] = (1 )*(from)[2] + ((Tmax))*(ray->dir)[2]); (Vmax) = vg(grad, pos [0], pos[1], pos[2], obj->A, obj->B); (dVmax) = ((grad) [0]*(ray->dir)[0] + (grad)[1]*(ray->dir)[1] + (grad)[2] *(ray->dir)[2]); |
269 | |
270 | /* if the segment start and end are both positive or both negative, |
271 | and if the derivatives also don't change sign, there's no root. |
272 | Also, due to convexity, if values at start and end are negative, |
273 | then there is no root */ |
274 | if ( (Vmin*Vmax >= 0 && dVmin*dVmax >= 0) |
275 | || (Vmin <= 0 && Vmax <= 0) ) { |
276 | return AIR_FALSE0; |
277 | } |
278 | if (tstate->verbose) { |
279 | fprintf(stderr__stderrp, "%s%s: dVmin = %g, dVmax = %g, Vmin = %g, Vmax = %g\n", |
280 | _echoDot(tstate->depth), me, dVmin, dVmax, Vmin, Vmax); |
281 | } |
282 | |
283 | /* either the value changed sign, or the derivative changed sign, or |
284 | both. If, as is common, the derivatives changed sign, but the |
285 | values didn't (which means they are both positive, due to a test |
286 | above), we need to limit the interval by minimizing the value |
287 | until either we see a negative value, or until the minimization |
288 | converged. Based on Golden Section Search, NR pg.401 */ |
289 | if (dVmin*dVmax < 0 && Vmin*Vmax >= 0) { |
290 | t0 = Tmin; |
291 | t1 = RR0.61803399*Tmin + CC(1.0-0.61803399)*Tmax; |
292 | t2 = CC(1.0-0.61803399)*Tmin + RR0.61803399*Tmax; |
293 | t3 = Tmax; |
294 | v1 = VAL(t1)(((pos)[0] = (1)*(from)[0] + ((t1))*(ray->dir)[0], (pos)[1 ] = (1)*(from)[1] + ((t1))*(ray->dir)[1], (pos)[2] = (1)*( from)[2] + ((t1))*(ray->dir)[2]), v(pos[0], pos[1], pos[2] , obj->A, obj->B)); |
295 | v2 = VAL(t2)(((pos)[0] = (1)*(from)[0] + ((t2))*(ray->dir)[0], (pos)[1 ] = (1)*(from)[1] + ((t2))*(ray->dir)[1], (pos)[2] = (1)*( from)[2] + ((t2))*(ray->dir)[2]), v(pos[0], pos[1], pos[2] , obj->A, obj->B)); |
296 | if (tstate->verbose) { |
297 | fprintf(stderr__stderrp, "%s%s: \n" |
298 | " t0 = % 31.15f\n" |
299 | " t1 = % 31.15f -> v1 = % 31.15f\n" |
300 | " t2 = % 31.15f -> v2 = % 31.15f\n" |
301 | " t3 = % 31.15f\n", |
302 | _echoDot(tstate->depth), me, |
303 | t0, t1, v1, t2, v2, t3); |
304 | } |
305 | tol = sqrt(ECHO_POS_EPS2.2204460492503131e-16); |
306 | while ( (t3-t0 > tol*(t1+t2)) /* still haven't converged */ |
307 | && (v1 > 0 && v2 > 0) ) { /* v1 and v2 both positive */ |
308 | diff = v2 - v1; |
309 | if (v1 < v2) { |
310 | SHIFT3(t3, t2, t1, CC*t0 + RR*t2)(t3)=(t2); (t2)=(t1); (t1)=((1.0-0.61803399)*t0 + 0.61803399* t2); |
311 | SHIFT2(v2, v1, VAL(t1))(v2)=(v1); (v1)=((((pos)[0] = (1)*(from)[0] + ((t1))*(ray-> dir)[0], (pos)[1] = (1)*(from)[1] + ((t1))*(ray->dir)[1], ( pos)[2] = (1)*(from)[2] + ((t1))*(ray->dir)[2]), v(pos[0], pos[1], pos[2], obj->A, obj->B))); |
312 | } else { |
313 | SHIFT3(t0, t1, t2, RR*t1 + CC*t3)(t0)=(t1); (t1)=(t2); (t2)=(0.61803399*t1 + (1.0-0.61803399)* t3); |
314 | SHIFT2(v1, v2, VAL(t2))(v1)=(v2); (v2)=((((pos)[0] = (1)*(from)[0] + ((t2))*(ray-> dir)[0], (pos)[1] = (1)*(from)[1] + ((t2))*(ray->dir)[1], ( pos)[2] = (1)*(from)[2] + ((t2))*(ray->dir)[2]), v(pos[0], pos[1], pos[2], obj->A, obj->B))); |
315 | } |
316 | if (tstate->verbose) { |
317 | fprintf(stderr__stderrp, "%s%s: %s ---> \n" |
318 | " t0 = % 31.15f\n" |
319 | " t1 = % 31.15f -> v1 = % 31.15f\n" |
320 | " t2 = % 31.15f -> v2 = % 31.15f\n" |
321 | " t3 = % 31.15f\n", |
322 | _echoDot(tstate->depth), me, |
323 | diff > 0 ? "v1 < v2" : "v1 > v2", |
324 | t0, t1, v1, t2, v2, t3); |
325 | } |
326 | } |
327 | if (v1 > 0 && v2 > 0) { |
328 | /* the minimization stopped, yet both v1 and v2 are still positive, |
329 | so there's no way we can have a root */ |
330 | if (tstate->verbose) { |
331 | fprintf(stderr__stderrp, "%s%s: minimization found no root\n", |
332 | _echoDot(tstate->depth), me); |
333 | } |
334 | return AIR_FALSE0; |
335 | } |
336 | /* else either v1 or v2 <= 0, so there is a root (actually two). |
337 | By construction, f(t0) is positive, so we can now bracket the |
338 | root between t0 and t1 or t2, whichever one is associated with |
339 | a smaller value */ |
340 | Tmin = t0; |
341 | /* HEY: shouldn't I just be using whichever one is closer? */ |
342 | Tmax = v1 < v2 ? t1 : t2; |
343 | Vmin = VAL(Tmin)(((pos)[0] = (1)*(from)[0] + ((Tmin))*(ray->dir)[0], (pos) [1] = (1)*(from)[1] + ((Tmin))*(ray->dir)[1], (pos)[2] = ( 1)*(from)[2] + ((Tmin))*(ray->dir)[2]), v(pos[0], pos[1], pos [2], obj->A, obj->B)); |
344 | Vmax = VAL(Tmax)(((pos)[0] = (1)*(from)[0] + ((Tmax))*(ray->dir)[0], (pos) [1] = (1)*(from)[1] + ((Tmax))*(ray->dir)[1], (pos)[2] = ( 1)*(from)[2] + ((Tmax))*(ray->dir)[2]), v(pos[0], pos[1], pos [2], obj->A, obj->B)); |
345 | } |
346 | |
347 | /* the value isn't necessarily monotonic between Tmin and Tmax, but |
348 | we know that there is only one root. Find it with newton-raphson, |
349 | using the log of function, both for values and for derivatives */ |
350 | iter = 0; |
351 | TT = (Tmin + Tmax)/2; |
352 | LVALGRAD(VV, dV, TT)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]); (VV) = lvg(grad, pos[0], pos [1], pos[2], obj->A, obj->B); (dV) = ((grad)[0]*(ray-> dir)[0] + (grad)[1]*(ray->dir)[1] + (grad)[2]*(ray->dir )[2]); |
353 | |
354 | while (iter < parm->sqNRI && AIR_ABS(VV)((VV) > 0.0f ? (VV) : -(VV)) > parm->sqTol |
355 | && AIR_EXISTS(VV)(((int)(!((VV) - (VV))))) && AIR_EXISTS(dV)(((int)(!((dV) - (dV)))))) { |
356 | if (tstate->verbose) { |
357 | fprintf(stderr__stderrp, "%s%s: iter = %d: TT = %g, VV = %g, dV = %g\n", |
358 | _echoDot(tstate->depth), me, iter, TT, VV, dV); |
359 | } |
360 | TT -= VV/dV; |
361 | if (!AIR_IN_OP(Tmin, TT, Tmax)((Tmin) < (TT) && (TT) < (Tmax))) { |
362 | /* newton-raphson sent us flying out of bounds; find a tighter |
363 | [Tmin,Tmax] bracket with bisection and try again */ |
364 | TT = (Tmin + Tmax)/2; |
365 | VV = VAL(TT)(((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1 ] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*( from)[2] + ((TT))*(ray->dir)[2]), v(pos[0], pos[1], pos[2] , obj->A, obj->B)); |
366 | if (Vmin*VV < 0) { |
367 | Tmax = TT; |
368 | Vmax = VV; |
Value stored to 'Vmax' is never read | |
369 | } else { |
370 | Tmin = TT; |
371 | Vmin = VV; |
372 | } |
373 | TT = (Tmin + Tmax)/2; |
374 | } |
375 | LVALGRAD(VV, dV, TT)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]); (VV) = lvg(grad, pos[0], pos [1], pos[2], obj->A, obj->B); (dV) = ((grad)[0]*(ray-> dir)[0] + (grad)[1]*(ray->dir)[1] + (grad)[2]*(ray->dir )[2]); |
376 | iter++; |
377 | } |
378 | |
379 | if (!( AIR_EXISTS(VV)(((int)(!((VV) - (VV))))) && AIR_EXISTS(dV)(((int)(!((dV) - (dV))))) )) { |
380 | /* we bailed out of the loop above because |
381 | we got screwed by numerical errors |
382 | --> pretend that there was no intersection, |
383 | and HEY this will have to be debugged later */ |
384 | if (tstate->verbose) { |
385 | fprintf(stderr__stderrp, "%s%s: SORRY, numerical problems!\n", |
386 | _echoDot(tstate->depth), me); |
387 | } |
388 | return AIR_FALSE0; |
389 | } |
390 | |
391 | /* else we succeeded in finding the intersection */ |
392 | intx->t = TT + saveTmin; |
393 | VALGRAD(VV, dV, TT)((pos)[0] = (1)*(from)[0] + ((TT))*(ray->dir)[0], (pos)[1] = (1)*(from)[1] + ((TT))*(ray->dir)[1], (pos)[2] = (1)*(from )[2] + ((TT))*(ray->dir)[2]); (VV) = vg(grad, pos[0], pos[ 1], pos[2], obj->A, obj->B); (dV) = ((grad)[0]*(ray-> dir)[0] + (grad)[1]*(ray->dir)[1] + (grad)[2]*(ray->dir )[2]); /* puts gradient into grad */ |
394 | ELL_3V_NORM(intx->norm, grad, tmp)(tmp = (sqrt((((grad))[0]*((grad))[0] + ((grad))[1]*((grad))[ 1] + ((grad))[2]*((grad))[2]))), ((intx->norm)[0] = (1.0/tmp )*(grad)[0], (intx->norm)[1] = (1.0/tmp)*(grad)[1], (intx-> norm)[2] = (1.0/tmp)*(grad)[2])); |
395 | intx->obj = OBJECT(obj)((echoObject*)obj); |
396 | /* set in intx: |
397 | yes: t, norm |
398 | no: u, v |
399 | */ |
400 | return AIR_TRUE1; |
401 | } |