File: | src/ten/fiber.c |
Location: | line 617, column 5 |
Description: | Value stored to 'fptsIdx' is never read |
1 | /* |
2 | Teem: Tools to process and visualize scientific data and images . |
3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
6 | |
7 | This library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public License |
9 | (LGPL) as published by the Free Software Foundation; either |
10 | version 2.1 of the License, or (at your option) any later version. |
11 | The terms of redistributing and/or modifying this software also |
12 | include exceptions to the LGPL that facilitate static linking. |
13 | |
14 | This library is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 | Lesser General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU Lesser General Public License |
20 | along with this library; if not, write to Free Software Foundation, Inc., |
21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 | */ |
23 | |
24 | #include "ten.h" |
25 | #include "privateTen.h" |
26 | |
27 | #define TEN_FIBER_INCR512 512 |
28 | |
29 | /* |
30 | ** _tenFiberProbe |
31 | ** |
32 | ** The job here is to probe at (world space) "wPos" and then set: |
33 | ** tfx->fiberTen |
34 | ** tfx->fiberEval (all 3 evals) |
35 | ** tfx->fiberEvec (all 3 eigenvectors) |
36 | ** if (tfx->stop & (1 << tenFiberStopAniso): tfx->fiberAnisoStop |
37 | ** |
38 | ** In the case of non-single-tensor tractography, we do so based on |
39 | ** ten2Which (when at the seedpoint) or |
40 | ** |
41 | ** Note that for performance reasons, a non-zero return value |
42 | ** (indicating error) and the associated use of biff, is only possible |
43 | ** if seedProbe is non-zero, the reason being that problems can be |
44 | ** detected at the seedpoint, and won't arise after the seedpoint. |
45 | ** |
46 | ** Errors from gage are indicated by *gageRet, which includes leaving |
47 | ** the domain of the volume, which is used to terminate fibers. |
48 | ** |
49 | ** Our use of tfx->seedEvec (shared with _tenFiberAlign), as well as that |
50 | ** of tfx->lastDir and tfx->lastDirSet, could stand to have further |
51 | ** debugging and documentation ... |
52 | */ |
53 | int |
54 | _tenFiberProbe(tenFiberContext *tfx, int *gageRet, |
55 | double wPos[3], int seedProbe) { |
56 | static const char me[]="_tenFiberProbe"; |
57 | double iPos[3]; |
58 | int ret = 0; |
59 | double tens2[2][7]; |
60 | |
61 | gageShapeWtoI(tfx->gtx->shape, iPos, wPos); |
62 | *gageRet = gageProbe(tfx->gtx, iPos[0], iPos[1], iPos[2]); |
63 | |
64 | if (tfx->verbose > 2) { |
65 | fprintf(stderr__stderrp, "%s(%g,%g,%g, %s): hi ----- %s\n", me, |
66 | iPos[0], iPos[1], iPos[2], seedProbe ? "***TRUE***" : "false", |
67 | tfx->useDwi ? "using DWIs" : ""); |
68 | } |
69 | |
70 | if (!tfx->useDwi) { |
71 | /* normal single-tensor tracking */ |
72 | TEN_T_COPY(tfx->fiberTen, tfx->gageTen)( (tfx->fiberTen)[0] = (tfx->gageTen)[0], (tfx->fiberTen )[1] = (tfx->gageTen)[1], (tfx->fiberTen)[2] = (tfx-> gageTen)[2], (tfx->fiberTen)[3] = (tfx->gageTen)[3], (tfx ->fiberTen)[4] = (tfx->gageTen)[4], (tfx->fiberTen)[ 5] = (tfx->gageTen)[5], (tfx->fiberTen)[6] = (tfx->gageTen )[6] ); |
73 | ELL_3V_COPY(tfx->fiberEval, tfx->gageEval)((tfx->fiberEval)[0] = (tfx->gageEval)[0], (tfx->fiberEval )[1] = (tfx->gageEval)[1], (tfx->fiberEval)[2] = (tfx-> gageEval)[2]); |
74 | ELL_3M_COPY(tfx->fiberEvec, tfx->gageEvec)((((tfx->fiberEvec)+0)[0] = ((tfx->gageEvec)+0)[0], ((tfx ->fiberEvec)+0)[1] = ((tfx->gageEvec)+0)[1], ((tfx-> fiberEvec)+0)[2] = ((tfx->gageEvec)+0)[2]), (((tfx->fiberEvec )+3)[0] = ((tfx->gageEvec)+3)[0], ((tfx->fiberEvec)+3)[ 1] = ((tfx->gageEvec)+3)[1], ((tfx->fiberEvec)+3)[2] = ( (tfx->gageEvec)+3)[2]), (((tfx->fiberEvec)+6)[0] = ((tfx ->gageEvec)+6)[0], ((tfx->fiberEvec)+6)[1] = ((tfx-> gageEvec)+6)[1], ((tfx->fiberEvec)+6)[2] = ((tfx->gageEvec )+6)[2])); |
75 | if (tfx->stop & (1 << tenFiberStopAniso)) { |
76 | tfx->fiberAnisoStop = tfx->gageAnisoStop[0]; |
77 | } |
78 | if (seedProbe) { |
79 | ELL_3V_COPY(tfx->seedEvec, tfx->fiberEvec)((tfx->seedEvec)[0] = (tfx->fiberEvec)[0], (tfx->seedEvec )[1] = (tfx->fiberEvec)[1], (tfx->seedEvec)[2] = (tfx-> fiberEvec)[2]); |
80 | } |
81 | } else { /* tracking in DWIs */ |
82 | if (tfx->verbose > 2 && seedProbe) { |
83 | fprintf(stderr__stderrp, "%s: fiber type = %s\n", me, |
84 | airEnumStr(tenDwiFiberType, tfx->fiberType)); |
85 | } |
86 | switch (tfx->fiberType) { |
87 | double evec[2][9], eval[2][3]; |
88 | case tenDwiFiberType1Evec0: |
89 | if (tfx->mframeUse) { |
90 | double matTmpA[9], matTmpB[9]; |
91 | TEN_T2M(matTmpA, tfx->gageTen)( (matTmpA)[0] = (tfx->gageTen)[1], (matTmpA)[1] = (tfx-> gageTen)[2], (matTmpA)[2] = (tfx->gageTen)[3], (matTmpA)[3 ] = (tfx->gageTen)[2], (matTmpA)[4] = (tfx->gageTen)[4] , (matTmpA)[5] = (tfx->gageTen)[5], (matTmpA)[6] = (tfx-> gageTen)[3], (matTmpA)[7] = (tfx->gageTen)[5], (matTmpA)[8 ] = (tfx->gageTen)[6] ); |
92 | ELL_3M_MUL(matTmpB, tfx->mframe, matTmpA)((matTmpB)[0] = (tfx->mframe)[0]*(matTmpA)[0] + (tfx->mframe )[1]*(matTmpA)[3] + (tfx->mframe)[2]*(matTmpA)[6], (matTmpB )[1] = (tfx->mframe)[0]*(matTmpA)[1] + (tfx->mframe)[1] *(matTmpA)[4] + (tfx->mframe)[2]*(matTmpA)[7], (matTmpB)[2 ] = (tfx->mframe)[0]*(matTmpA)[2] + (tfx->mframe)[1]*(matTmpA )[5] + (tfx->mframe)[2]*(matTmpA)[8], (matTmpB)[3] = (tfx-> mframe)[3]*(matTmpA)[0] + (tfx->mframe)[4]*(matTmpA)[3] + ( tfx->mframe)[5]*(matTmpA)[6], (matTmpB)[4] = (tfx->mframe )[3]*(matTmpA)[1] + (tfx->mframe)[4]*(matTmpA)[4] + (tfx-> mframe)[5]*(matTmpA)[7], (matTmpB)[5] = (tfx->mframe)[3]*( matTmpA)[2] + (tfx->mframe)[4]*(matTmpA)[5] + (tfx->mframe )[5]*(matTmpA)[8], (matTmpB)[6] = (tfx->mframe)[6]*(matTmpA )[0] + (tfx->mframe)[7]*(matTmpA)[3] + (tfx->mframe)[8] *(matTmpA)[6], (matTmpB)[7] = (tfx->mframe)[6]*(matTmpA)[1 ] + (tfx->mframe)[7]*(matTmpA)[4] + (tfx->mframe)[8]*(matTmpA )[7], (matTmpB)[8] = (tfx->mframe)[6]*(matTmpA)[2] + (tfx-> mframe)[7]*(matTmpA)[5] + (tfx->mframe)[8]*(matTmpA)[8]); |
93 | ELL_3M_MUL(matTmpA, matTmpB, tfx->mframeT)((matTmpA)[0] = (matTmpB)[0]*(tfx->mframeT)[0] + (matTmpB) [1]*(tfx->mframeT)[3] + (matTmpB)[2]*(tfx->mframeT)[6], (matTmpA)[1] = (matTmpB)[0]*(tfx->mframeT)[1] + (matTmpB) [1]*(tfx->mframeT)[4] + (matTmpB)[2]*(tfx->mframeT)[7], (matTmpA)[2] = (matTmpB)[0]*(tfx->mframeT)[2] + (matTmpB) [1]*(tfx->mframeT)[5] + (matTmpB)[2]*(tfx->mframeT)[8], (matTmpA)[3] = (matTmpB)[3]*(tfx->mframeT)[0] + (matTmpB) [4]*(tfx->mframeT)[3] + (matTmpB)[5]*(tfx->mframeT)[6], (matTmpA)[4] = (matTmpB)[3]*(tfx->mframeT)[1] + (matTmpB) [4]*(tfx->mframeT)[4] + (matTmpB)[5]*(tfx->mframeT)[7], (matTmpA)[5] = (matTmpB)[3]*(tfx->mframeT)[2] + (matTmpB) [4]*(tfx->mframeT)[5] + (matTmpB)[5]*(tfx->mframeT)[8], (matTmpA)[6] = (matTmpB)[6]*(tfx->mframeT)[0] + (matTmpB) [7]*(tfx->mframeT)[3] + (matTmpB)[8]*(tfx->mframeT)[6], (matTmpA)[7] = (matTmpB)[6]*(tfx->mframeT)[1] + (matTmpB) [7]*(tfx->mframeT)[4] + (matTmpB)[8]*(tfx->mframeT)[7], (matTmpA)[8] = (matTmpB)[6]*(tfx->mframeT)[2] + (matTmpB) [7]*(tfx->mframeT)[5] + (matTmpB)[8]*(tfx->mframeT)[8]); |
94 | TEN_M2T(tfx->fiberTen, matTmpA)( (tfx->fiberTen)[1] = (matTmpA)[0], (tfx->fiberTen)[2] = ((matTmpA)[1]+(matTmpA)[3])/2.0, (tfx->fiberTen)[3] = ( (matTmpA)[2]+(matTmpA)[6])/2.0, (tfx->fiberTen)[4] = (matTmpA )[4], (tfx->fiberTen)[5] = ((matTmpA)[5]+(matTmpA)[7])/2.0 , (tfx->fiberTen)[6] = (matTmpA)[8] ); |
95 | tfx->fiberTen[0] = tfx->gageTen[0]; |
96 | } else { |
97 | TEN_T_COPY(tfx->fiberTen, tfx->gageTen)( (tfx->fiberTen)[0] = (tfx->gageTen)[0], (tfx->fiberTen )[1] = (tfx->gageTen)[1], (tfx->fiberTen)[2] = (tfx-> gageTen)[2], (tfx->fiberTen)[3] = (tfx->gageTen)[3], (tfx ->fiberTen)[4] = (tfx->gageTen)[4], (tfx->fiberTen)[ 5] = (tfx->gageTen)[5], (tfx->fiberTen)[6] = (tfx->gageTen )[6] ); |
98 | } |
99 | tenEigensolve_d(tfx->fiberEval, tfx->fiberEvec, tfx->fiberTen); |
100 | if (tfx->stop & (1 << tenFiberStopAniso)) { |
101 | double tmp; |
102 | tmp = tenAnisoTen_d(tfx->fiberTen, tfx->anisoStopType); |
103 | tfx->fiberAnisoStop = AIR_CLAMP(0, tmp, 1)((tmp) < (0) ? (0) : ((tmp) > (1) ? (1) : (tmp))); |
104 | } |
105 | if (seedProbe) { |
106 | ELL_3V_COPY(tfx->seedEvec, tfx->fiberEvec)((tfx->seedEvec)[0] = (tfx->fiberEvec)[0], (tfx->seedEvec )[1] = (tfx->fiberEvec)[1], (tfx->seedEvec)[2] = (tfx-> fiberEvec)[2]); |
107 | } |
108 | break; |
109 | case tenDwiFiberType2Evec0: |
110 | /* Estimate principal diffusion direction of each tensor */ |
111 | if (tfx->mframeUse) { |
112 | /* Transform both the tensors */ |
113 | double matTmpA[9], matTmpB[9]; |
114 | |
115 | TEN_T2M(matTmpA, tfx->gageTen2 + 0)( (matTmpA)[0] = (tfx->gageTen2 + 0)[1], (matTmpA)[1] = (tfx ->gageTen2 + 0)[2], (matTmpA)[2] = (tfx->gageTen2 + 0)[ 3], (matTmpA)[3] = (tfx->gageTen2 + 0)[2], (matTmpA)[4] = ( tfx->gageTen2 + 0)[4], (matTmpA)[5] = (tfx->gageTen2 + 0 )[5], (matTmpA)[6] = (tfx->gageTen2 + 0)[3], (matTmpA)[7] = (tfx->gageTen2 + 0)[5], (matTmpA)[8] = (tfx->gageTen2 + 0)[6] ); |
116 | ELL_3M_MUL(matTmpB, tfx->mframe, matTmpA)((matTmpB)[0] = (tfx->mframe)[0]*(matTmpA)[0] + (tfx->mframe )[1]*(matTmpA)[3] + (tfx->mframe)[2]*(matTmpA)[6], (matTmpB )[1] = (tfx->mframe)[0]*(matTmpA)[1] + (tfx->mframe)[1] *(matTmpA)[4] + (tfx->mframe)[2]*(matTmpA)[7], (matTmpB)[2 ] = (tfx->mframe)[0]*(matTmpA)[2] + (tfx->mframe)[1]*(matTmpA )[5] + (tfx->mframe)[2]*(matTmpA)[8], (matTmpB)[3] = (tfx-> mframe)[3]*(matTmpA)[0] + (tfx->mframe)[4]*(matTmpA)[3] + ( tfx->mframe)[5]*(matTmpA)[6], (matTmpB)[4] = (tfx->mframe )[3]*(matTmpA)[1] + (tfx->mframe)[4]*(matTmpA)[4] + (tfx-> mframe)[5]*(matTmpA)[7], (matTmpB)[5] = (tfx->mframe)[3]*( matTmpA)[2] + (tfx->mframe)[4]*(matTmpA)[5] + (tfx->mframe )[5]*(matTmpA)[8], (matTmpB)[6] = (tfx->mframe)[6]*(matTmpA )[0] + (tfx->mframe)[7]*(matTmpA)[3] + (tfx->mframe)[8] *(matTmpA)[6], (matTmpB)[7] = (tfx->mframe)[6]*(matTmpA)[1 ] + (tfx->mframe)[7]*(matTmpA)[4] + (tfx->mframe)[8]*(matTmpA )[7], (matTmpB)[8] = (tfx->mframe)[6]*(matTmpA)[2] + (tfx-> mframe)[7]*(matTmpA)[5] + (tfx->mframe)[8]*(matTmpA)[8]); |
117 | ELL_3M_MUL(matTmpA, matTmpB, tfx->mframeT)((matTmpA)[0] = (matTmpB)[0]*(tfx->mframeT)[0] + (matTmpB) [1]*(tfx->mframeT)[3] + (matTmpB)[2]*(tfx->mframeT)[6], (matTmpA)[1] = (matTmpB)[0]*(tfx->mframeT)[1] + (matTmpB) [1]*(tfx->mframeT)[4] + (matTmpB)[2]*(tfx->mframeT)[7], (matTmpA)[2] = (matTmpB)[0]*(tfx->mframeT)[2] + (matTmpB) [1]*(tfx->mframeT)[5] + (matTmpB)[2]*(tfx->mframeT)[8], (matTmpA)[3] = (matTmpB)[3]*(tfx->mframeT)[0] + (matTmpB) [4]*(tfx->mframeT)[3] + (matTmpB)[5]*(tfx->mframeT)[6], (matTmpA)[4] = (matTmpB)[3]*(tfx->mframeT)[1] + (matTmpB) [4]*(tfx->mframeT)[4] + (matTmpB)[5]*(tfx->mframeT)[7], (matTmpA)[5] = (matTmpB)[3]*(tfx->mframeT)[2] + (matTmpB) [4]*(tfx->mframeT)[5] + (matTmpB)[5]*(tfx->mframeT)[8], (matTmpA)[6] = (matTmpB)[6]*(tfx->mframeT)[0] + (matTmpB) [7]*(tfx->mframeT)[3] + (matTmpB)[8]*(tfx->mframeT)[6], (matTmpA)[7] = (matTmpB)[6]*(tfx->mframeT)[1] + (matTmpB) [7]*(tfx->mframeT)[4] + (matTmpB)[8]*(tfx->mframeT)[7], (matTmpA)[8] = (matTmpB)[6]*(tfx->mframeT)[2] + (matTmpB) [7]*(tfx->mframeT)[5] + (matTmpB)[8]*(tfx->mframeT)[8]); |
118 | TEN_M2T(tens2[0], matTmpA)( (tens2[0])[1] = (matTmpA)[0], (tens2[0])[2] = ((matTmpA)[1] +(matTmpA)[3])/2.0, (tens2[0])[3] = ((matTmpA)[2]+(matTmpA)[6 ])/2.0, (tens2[0])[4] = (matTmpA)[4], (tens2[0])[5] = ((matTmpA )[5]+(matTmpA)[7])/2.0, (tens2[0])[6] = (matTmpA)[8] ); |
119 | /* new eigen values and vectors */ |
120 | tenEigensolve_d(eval[0], evec[0], tens2[0]); |
121 | |
122 | TEN_T2M(matTmpA, tfx->gageTen2 + 7)( (matTmpA)[0] = (tfx->gageTen2 + 7)[1], (matTmpA)[1] = (tfx ->gageTen2 + 7)[2], (matTmpA)[2] = (tfx->gageTen2 + 7)[ 3], (matTmpA)[3] = (tfx->gageTen2 + 7)[2], (matTmpA)[4] = ( tfx->gageTen2 + 7)[4], (matTmpA)[5] = (tfx->gageTen2 + 7 )[5], (matTmpA)[6] = (tfx->gageTen2 + 7)[3], (matTmpA)[7] = (tfx->gageTen2 + 7)[5], (matTmpA)[8] = (tfx->gageTen2 + 7)[6] ); |
123 | ELL_3M_MUL(matTmpB, tfx->mframe, matTmpA)((matTmpB)[0] = (tfx->mframe)[0]*(matTmpA)[0] + (tfx->mframe )[1]*(matTmpA)[3] + (tfx->mframe)[2]*(matTmpA)[6], (matTmpB )[1] = (tfx->mframe)[0]*(matTmpA)[1] + (tfx->mframe)[1] *(matTmpA)[4] + (tfx->mframe)[2]*(matTmpA)[7], (matTmpB)[2 ] = (tfx->mframe)[0]*(matTmpA)[2] + (tfx->mframe)[1]*(matTmpA )[5] + (tfx->mframe)[2]*(matTmpA)[8], (matTmpB)[3] = (tfx-> mframe)[3]*(matTmpA)[0] + (tfx->mframe)[4]*(matTmpA)[3] + ( tfx->mframe)[5]*(matTmpA)[6], (matTmpB)[4] = (tfx->mframe )[3]*(matTmpA)[1] + (tfx->mframe)[4]*(matTmpA)[4] + (tfx-> mframe)[5]*(matTmpA)[7], (matTmpB)[5] = (tfx->mframe)[3]*( matTmpA)[2] + (tfx->mframe)[4]*(matTmpA)[5] + (tfx->mframe )[5]*(matTmpA)[8], (matTmpB)[6] = (tfx->mframe)[6]*(matTmpA )[0] + (tfx->mframe)[7]*(matTmpA)[3] + (tfx->mframe)[8] *(matTmpA)[6], (matTmpB)[7] = (tfx->mframe)[6]*(matTmpA)[1 ] + (tfx->mframe)[7]*(matTmpA)[4] + (tfx->mframe)[8]*(matTmpA )[7], (matTmpB)[8] = (tfx->mframe)[6]*(matTmpA)[2] + (tfx-> mframe)[7]*(matTmpA)[5] + (tfx->mframe)[8]*(matTmpA)[8]); |
124 | ELL_3M_MUL(matTmpA, matTmpB, tfx->mframeT)((matTmpA)[0] = (matTmpB)[0]*(tfx->mframeT)[0] + (matTmpB) [1]*(tfx->mframeT)[3] + (matTmpB)[2]*(tfx->mframeT)[6], (matTmpA)[1] = (matTmpB)[0]*(tfx->mframeT)[1] + (matTmpB) [1]*(tfx->mframeT)[4] + (matTmpB)[2]*(tfx->mframeT)[7], (matTmpA)[2] = (matTmpB)[0]*(tfx->mframeT)[2] + (matTmpB) [1]*(tfx->mframeT)[5] + (matTmpB)[2]*(tfx->mframeT)[8], (matTmpA)[3] = (matTmpB)[3]*(tfx->mframeT)[0] + (matTmpB) [4]*(tfx->mframeT)[3] + (matTmpB)[5]*(tfx->mframeT)[6], (matTmpA)[4] = (matTmpB)[3]*(tfx->mframeT)[1] + (matTmpB) [4]*(tfx->mframeT)[4] + (matTmpB)[5]*(tfx->mframeT)[7], (matTmpA)[5] = (matTmpB)[3]*(tfx->mframeT)[2] + (matTmpB) [4]*(tfx->mframeT)[5] + (matTmpB)[5]*(tfx->mframeT)[8], (matTmpA)[6] = (matTmpB)[6]*(tfx->mframeT)[0] + (matTmpB) [7]*(tfx->mframeT)[3] + (matTmpB)[8]*(tfx->mframeT)[6], (matTmpA)[7] = (matTmpB)[6]*(tfx->mframeT)[1] + (matTmpB) [7]*(tfx->mframeT)[4] + (matTmpB)[8]*(tfx->mframeT)[7], (matTmpA)[8] = (matTmpB)[6]*(tfx->mframeT)[2] + (matTmpB) [7]*(tfx->mframeT)[5] + (matTmpB)[8]*(tfx->mframeT)[8]); |
125 | TEN_M2T(tens2[1], matTmpA)( (tens2[1])[1] = (matTmpA)[0], (tens2[1])[2] = ((matTmpA)[1] +(matTmpA)[3])/2.0, (tens2[1])[3] = ((matTmpA)[2]+(matTmpA)[6 ])/2.0, (tens2[1])[4] = (matTmpA)[4], (tens2[1])[5] = ((matTmpA )[5]+(matTmpA)[7])/2.0, (tens2[1])[6] = (matTmpA)[8] ); |
126 | tenEigensolve_d(eval[1], evec[1], tens2[1]); |
127 | } else { |
128 | tenEigensolve_d(eval[0], evec[0], tfx->gageTen2 + 0); |
129 | tenEigensolve_d(eval[1], evec[1], tfx->gageTen2 + 7); |
130 | } |
131 | |
132 | /* set ten2Use */ |
133 | if (seedProbe) { /* we're on the *very* 1st probe per tract, |
134 | at the seed pt */ |
135 | ELL_3V_COPY(tfx->seedEvec, evec[tfx->ten2Which])((tfx->seedEvec)[0] = (evec[tfx->ten2Which])[0], (tfx-> seedEvec)[1] = (evec[tfx->ten2Which])[1], (tfx->seedEvec )[2] = (evec[tfx->ten2Which])[2]); |
136 | tfx->ten2Use = tfx->ten2Which; |
137 | if (tfx->verbose > 2) { |
138 | fprintf(stderr__stderrp, "%s: ** ten2Use == ten2Which == %d\n", me, |
139 | tfx->ten2Use); |
140 | } |
141 | } else { |
142 | double *lastVec, dot[2]; |
143 | |
144 | if (!tfx->lastDirSet) { |
145 | /* we're on some probe of the first step */ |
146 | lastVec = tfx->seedEvec; |
147 | } else { |
148 | /* we're past the first step */ |
149 | /* Arish says: "Bug len has not been initialized and don't think |
150 | its needed". The first part is not a problem; "len" is in the |
151 | *output* argument of ELL_3V_NORM. The second part seems to be |
152 | true, even though Gordon can't currently see why! */ |
153 | /* ELL_3V_NORM(tfx->lastDir, tfx->lastDir, len); */ |
154 | lastVec = tfx->lastDir; |
155 | } |
156 | dot[0] = ELL_3V_DOT(lastVec, evec[0])((lastVec)[0]*(evec[0])[0] + (lastVec)[1]*(evec[0])[1] + (lastVec )[2]*(evec[0])[2]); |
157 | dot[1] = ELL_3V_DOT(lastVec, evec[1])((lastVec)[0]*(evec[1])[0] + (lastVec)[1]*(evec[1])[1] + (lastVec )[2]*(evec[1])[2]); |
158 | if (dot[0] < 0) { |
159 | dot[0] *= -1; |
160 | ELL_3M_SCALE(evec[0], -1, evec[0])((((evec[0])+0)[0] = ((-1))*((evec[0])+0)[0], ((evec[0])+0)[1 ] = ((-1))*((evec[0])+0)[1], ((evec[0])+0)[2] = ((-1))*((evec [0])+0)[2]), (((evec[0])+3)[0] = ((-1))*((evec[0])+3)[0], ((evec [0])+3)[1] = ((-1))*((evec[0])+3)[1], ((evec[0])+3)[2] = ((-1 ))*((evec[0])+3)[2]), (((evec[0])+6)[0] = ((-1))*((evec[0])+6 )[0], ((evec[0])+6)[1] = ((-1))*((evec[0])+6)[1], ((evec[0])+ 6)[2] = ((-1))*((evec[0])+6)[2])); |
161 | } |
162 | if (dot[1] < 0) { |
163 | dot[1] *= -1; |
164 | ELL_3M_SCALE(evec[1], -1, evec[1])((((evec[1])+0)[0] = ((-1))*((evec[1])+0)[0], ((evec[1])+0)[1 ] = ((-1))*((evec[1])+0)[1], ((evec[1])+0)[2] = ((-1))*((evec [1])+0)[2]), (((evec[1])+3)[0] = ((-1))*((evec[1])+3)[0], ((evec [1])+3)[1] = ((-1))*((evec[1])+3)[1], ((evec[1])+3)[2] = ((-1 ))*((evec[1])+3)[2]), (((evec[1])+6)[0] = ((-1))*((evec[1])+6 )[0], ((evec[1])+6)[1] = ((-1))*((evec[1])+6)[1], ((evec[1])+ 6)[2] = ((-1))*((evec[1])+6)[2])); |
165 | } |
166 | tfx->ten2Use = (dot[0] > dot[1]) ? 0 : 1; |
167 | if (tfx->verbose > 2) { |
168 | fprintf(stderr__stderrp, "%s(%g,%g,%g): dot[0,1] = %f, %f -> use %u\n", |
169 | me, wPos[0], wPos[1], wPos[2], dot[0], dot[1], |
170 | tfx->ten2Use ); |
171 | } |
172 | } |
173 | |
174 | /* based on ten2Use, set the rest of the needed fields */ |
175 | if (tfx->mframeUse) { |
176 | TEN_T_COPY(tfx->fiberTen, tens2[tfx->ten2Use])( (tfx->fiberTen)[0] = (tens2[tfx->ten2Use])[0], (tfx-> fiberTen)[1] = (tens2[tfx->ten2Use])[1], (tfx->fiberTen )[2] = (tens2[tfx->ten2Use])[2], (tfx->fiberTen)[3] = ( tens2[tfx->ten2Use])[3], (tfx->fiberTen)[4] = (tens2[tfx ->ten2Use])[4], (tfx->fiberTen)[5] = (tens2[tfx->ten2Use ])[5], (tfx->fiberTen)[6] = (tens2[tfx->ten2Use])[6] ); |
177 | } else { |
178 | TEN_T_COPY(tfx->fiberTen, tfx->gageTen2 + 7*(tfx->ten2Use))( (tfx->fiberTen)[0] = (tfx->gageTen2 + 7*(tfx->ten2Use ))[0], (tfx->fiberTen)[1] = (tfx->gageTen2 + 7*(tfx-> ten2Use))[1], (tfx->fiberTen)[2] = (tfx->gageTen2 + 7*( tfx->ten2Use))[2], (tfx->fiberTen)[3] = (tfx->gageTen2 + 7*(tfx->ten2Use))[3], (tfx->fiberTen)[4] = (tfx-> gageTen2 + 7*(tfx->ten2Use))[4], (tfx->fiberTen)[5] = ( tfx->gageTen2 + 7*(tfx->ten2Use))[5], (tfx->fiberTen )[6] = (tfx->gageTen2 + 7*(tfx->ten2Use))[6] ); |
179 | } |
180 | tfx->fiberTen[0] = tfx->gageTen2[0]; /* copy confidence */ |
181 | ELL_3V_COPY(tfx->fiberEval, eval[tfx->ten2Use])((tfx->fiberEval)[0] = (eval[tfx->ten2Use])[0], (tfx-> fiberEval)[1] = (eval[tfx->ten2Use])[1], (tfx->fiberEval )[2] = (eval[tfx->ten2Use])[2]); |
182 | ELL_3M_COPY(tfx->fiberEvec, evec[tfx->ten2Use])((((tfx->fiberEvec)+0)[0] = ((evec[tfx->ten2Use])+0)[0] , ((tfx->fiberEvec)+0)[1] = ((evec[tfx->ten2Use])+0)[1] , ((tfx->fiberEvec)+0)[2] = ((evec[tfx->ten2Use])+0)[2] ), (((tfx->fiberEvec)+3)[0] = ((evec[tfx->ten2Use])+3)[ 0], ((tfx->fiberEvec)+3)[1] = ((evec[tfx->ten2Use])+3)[ 1], ((tfx->fiberEvec)+3)[2] = ((evec[tfx->ten2Use])+3)[ 2]), (((tfx->fiberEvec)+6)[0] = ((evec[tfx->ten2Use])+6 )[0], ((tfx->fiberEvec)+6)[1] = ((evec[tfx->ten2Use])+6 )[1], ((tfx->fiberEvec)+6)[2] = ((evec[tfx->ten2Use])+6 )[2])); |
183 | if (tfx->stop & (1 << tenFiberStopAniso)) { |
184 | double tmp; |
185 | tmp = tenAnisoEval_d(tfx->fiberEval, tfx->anisoStopType); |
186 | tfx->fiberAnisoStop = AIR_CLAMP(0, tmp, 1)((tmp) < (0) ? (0) : ((tmp) > (1) ? (1) : (tmp))); |
187 | /* HEY: what about speed? */ |
188 | } else { |
189 | tfx->fiberAnisoStop = AIR_NAN(airFloatQNaN.f); |
190 | } |
191 | break; |
192 | default: |
193 | biffAddf(TENtenBiffKey, "%s: %s %s (%d) unimplemented!", me, |
194 | tenDwiFiberType->name, |
195 | airEnumStr(tenDwiFiberType, tfx->fiberType), tfx->fiberType); |
196 | ret = 1; |
197 | } /* switch (tfx->fiberType) */ |
198 | } |
199 | if (tfx->verbose > 2) { |
200 | fprintf(stderr__stderrp, "%s: fiberEvec = %g %g %g\n", me, |
201 | tfx->fiberEvec[0], tfx->fiberEvec[1], tfx->fiberEvec[2]); |
202 | } |
203 | |
204 | return ret; |
205 | } |
206 | |
207 | int |
208 | _tenFiberStopCheck(tenFiberContext *tfx) { |
209 | static const char me[]="_tenFiberStopCheck"; |
210 | |
211 | if (tfx->numSteps[tfx->halfIdx] >= TEN_FIBER_NUM_STEPS_MAX10240) { |
212 | fprintf(stderr__stderrp, "%s: numSteps[%d] exceeded sanity check value of %d!!\n", |
213 | me, tfx->halfIdx, TEN_FIBER_NUM_STEPS_MAX10240); |
214 | fprintf(stderr__stderrp, "%s: Check fiber termination conditions, or recompile " |
215 | "with a larger value for TEN_FIBER_NUM_STEPS_MAX\n", me); |
216 | return tenFiberStopNumSteps; |
217 | } |
218 | if (tfx->stop & (1 << tenFiberStopConfidence)) { |
219 | if (tfx->fiberTen[0] < tfx->confThresh) { |
220 | return tenFiberStopConfidence; |
221 | } |
222 | } |
223 | if (tfx->stop & (1 << tenFiberStopRadius)) { |
224 | if (tfx->radius < tfx->minRadius) { |
225 | return tenFiberStopRadius; |
226 | } |
227 | } |
228 | if (tfx->stop & (1 << tenFiberStopAniso)) { |
229 | if (tfx->fiberAnisoStop < tfx->anisoThresh) { |
230 | return tenFiberStopAniso; |
231 | } |
232 | } |
233 | if (tfx->stop & (1 << tenFiberStopNumSteps)) { |
234 | if (tfx->numSteps[tfx->halfIdx] > tfx->maxNumSteps) { |
235 | return tenFiberStopNumSteps; |
236 | } |
237 | } |
238 | if (tfx->stop & (1 << tenFiberStopLength)) { |
239 | if (tfx->halfLen[tfx->halfIdx] >= tfx->maxHalfLen) { |
240 | return tenFiberStopLength; |
241 | } |
242 | } |
243 | if (tfx->useDwi |
244 | && tfx->stop & (1 << tenFiberStopFraction) |
245 | && tfx->gageTen2) { /* not all DWI fiber types use gageTen2 */ |
246 | double fracUse; |
247 | fracUse = (0 == tfx->ten2Use |
248 | ? tfx->gageTen2[7] |
249 | : 1 - tfx->gageTen2[7]); |
250 | if (fracUse < tfx->minFraction) { |
251 | return tenFiberStopFraction; |
252 | } |
253 | } |
254 | return 0; |
255 | } |
256 | |
257 | void |
258 | _tenFiberAlign(tenFiberContext *tfx, double vec[3]) { |
259 | static const char me[]="_tenFiberAlign"; |
260 | double scale, dot; |
261 | |
262 | if (tfx->verbose > 2) { |
263 | fprintf(stderr__stderrp, "%s: hi %s (lds %d):\t%g %g %g\n", me, |
264 | !tfx->lastDirSet ? "**" : " ", |
265 | tfx->lastDirSet, vec[0], vec[1], vec[2]); |
266 | } |
267 | if (!(tfx->lastDirSet)) { |
268 | dot = ELL_3V_DOT(tfx->seedEvec, vec)((tfx->seedEvec)[0]*(vec)[0] + (tfx->seedEvec)[1]*(vec) [1] + (tfx->seedEvec)[2]*(vec)[2]); |
269 | /* this is the first step (or one of the intermediate steps |
270 | for RK) in this fiber half; 1st half follows the |
271 | eigenvector determined at seed point, 2nd goes opposite */ |
272 | if (tfx->verbose > 2) { |
273 | fprintf(stderr__stderrp, "!%s: dir=%d, dot=%g\n", me, tfx->halfIdx, dot); |
274 | } |
275 | if (!tfx->halfIdx) { |
276 | /* 1st half */ |
277 | scale = dot < 0 ? -1 : 1; |
278 | } else { |
279 | /* 2nd half */ |
280 | scale = dot > 0 ? -1 : 1; |
281 | } |
282 | } else { |
283 | dot = ELL_3V_DOT(tfx->lastDir, vec)((tfx->lastDir)[0]*(vec)[0] + (tfx->lastDir)[1]*(vec)[1 ] + (tfx->lastDir)[2]*(vec)[2]); |
284 | /* we have some history in this fiber half */ |
285 | scale = dot < 0 ? -1 : 1; |
286 | } |
287 | ELL_3V_SCALE(vec, scale, vec)((vec)[0] = (scale)*(vec)[0], (vec)[1] = (scale)*(vec)[1], (vec )[2] = (scale)*(vec)[2]); |
288 | if (tfx->verbose > 2) { |
289 | fprintf(stderr__stderrp, "!%s: scl = %g -> \t%g %g %g\n", |
290 | me, scale, vec[0], vec[1], vec[2]); |
291 | } |
292 | return; |
293 | } |
294 | |
295 | /* |
296 | ** parm[0]: lerp between 1 and the stuff below |
297 | ** parm[1]: "t": (parm[1],0) is control point between (0,0) and (1,1) |
298 | ** parm[2]: "d": parabolic blend between parm[1]-parm[2] and parm[1]+parm[2] |
299 | */ |
300 | void |
301 | _tenFiberAnisoSpeed(double *step, double xx, double parm[3]) { |
302 | double aa, dd, tt, yy; |
303 | |
304 | tt = parm[1]; |
305 | dd = parm[2]; |
306 | aa = 1.0/(DBL_EPSILON2.2204460492503131e-16 + 4*dd*(1.0-tt)); |
307 | yy = xx - tt + dd; |
308 | xx = (xx < tt - dd |
309 | ? 0 |
310 | : (xx < tt + dd |
311 | ? aa*yy*yy |
312 | : (xx - tt)/(1 - tt))); |
313 | xx = AIR_LERP(parm[0], 1, xx)((parm[0])*((xx) - (1)) + (1)); |
314 | ELL_3V_SCALE(step, xx, step)((step)[0] = (xx)*(step)[0], (step)[1] = (xx)*(step)[1], (step )[2] = (xx)*(step)[2]); |
315 | } |
316 | |
317 | /* |
318 | ** ------------------------------------------------------------------- |
319 | ** ------------------------------------------------------------------- |
320 | ** The _tenFiberStep_* routines are responsible for putting a step into |
321 | ** the given step[] vector. Without anisoStepSize, this should be |
322 | ** UNIT LENGTH, with anisoStepSize, its scaled by that anisotropy measure |
323 | */ |
324 | void |
325 | _tenFiberStep_Evec(tenFiberContext *tfx, double step[3]) { |
326 | |
327 | /* fiberEvec points to the correct gage answer based on fiberType */ |
328 | ELL_3V_COPY(step, tfx->fiberEvec + 3*0)((step)[0] = (tfx->fiberEvec + 3*0)[0], (step)[1] = (tfx-> fiberEvec + 3*0)[1], (step)[2] = (tfx->fiberEvec + 3*0)[2] ); |
329 | _tenFiberAlign(tfx, step); |
330 | if (tfx->anisoSpeedType) { |
331 | _tenFiberAnisoSpeed(step, tfx->fiberAnisoSpeed, |
332 | tfx->anisoSpeedFunc); |
333 | } |
334 | } |
335 | |
336 | void |
337 | _tenFiberStep_TensorLine(tenFiberContext *tfx, double step[3]) { |
338 | double cl, evec0[3], vout[3], vin[3], len; |
339 | |
340 | ELL_3V_COPY(evec0, tfx->fiberEvec + 3*0)((evec0)[0] = (tfx->fiberEvec + 3*0)[0], (evec0)[1] = (tfx ->fiberEvec + 3*0)[1], (evec0)[2] = (tfx->fiberEvec + 3 *0)[2]); |
341 | _tenFiberAlign(tfx, evec0); |
342 | |
343 | if (tfx->lastDirSet) { |
344 | ELL_3V_COPY(vin, tfx->lastDir)((vin)[0] = (tfx->lastDir)[0], (vin)[1] = (tfx->lastDir )[1], (vin)[2] = (tfx->lastDir)[2]); |
345 | TEN_T3V_MUL(vout, tfx->fiberTen, tfx->lastDir)( (vout)[0] = (tfx->fiberTen)[1]*(tfx->lastDir)[0] + (tfx ->fiberTen)[2]*(tfx->lastDir)[1] + (tfx->fiberTen)[3 ]*(tfx->lastDir)[2], (vout)[1] = (tfx->fiberTen)[2]*(tfx ->lastDir)[0] + (tfx->fiberTen)[4]*(tfx->lastDir)[1] + (tfx->fiberTen)[5]*(tfx->lastDir)[2], (vout)[2] = (tfx ->fiberTen)[3]*(tfx->lastDir)[0] + (tfx->fiberTen)[5 ]*(tfx->lastDir)[1] + (tfx->fiberTen)[6]*(tfx->lastDir )[2]); |
346 | ELL_3V_NORM(vout, vout, len)(len = (sqrt((((vout))[0]*((vout))[0] + ((vout))[1]*((vout))[ 1] + ((vout))[2]*((vout))[2]))), ((vout)[0] = (1.0/len)*(vout )[0], (vout)[1] = (1.0/len)*(vout)[1], (vout)[2] = (1.0/len)* (vout)[2])); |
347 | _tenFiberAlign(tfx, vout); /* HEY: is this needed? */ |
348 | } else { |
349 | ELL_3V_COPY(vin, evec0)((vin)[0] = (evec0)[0], (vin)[1] = (evec0)[1], (vin)[2] = (evec0 )[2]); |
350 | ELL_3V_COPY(vout, evec0)((vout)[0] = (evec0)[0], (vout)[1] = (evec0)[1], (vout)[2] = ( evec0)[2]); |
351 | } |
352 | |
353 | /* HEY: should be using one of the tenAnisoEval[] functions */ |
354 | cl = (tfx->fiberEval[0] - tfx->fiberEval[1])/(tfx->fiberEval[0] + 0.00001); |
355 | |
356 | ELL_3V_SCALE_ADD3(step,((step)[0] = (cl)*(evec0)[0] + ((1-cl)*(1-tfx->wPunct))*(vin )[0] + ((1-cl)*tfx->wPunct)*(vout)[0], (step)[1] = (cl)*(evec0 )[1] + ((1-cl)*(1-tfx->wPunct))*(vin)[1] + ((1-cl)*tfx-> wPunct)*(vout)[1], (step)[2] = (cl)*(evec0)[2] + ((1-cl)*(1-tfx ->wPunct))*(vin)[2] + ((1-cl)*tfx->wPunct)*(vout)[2]) |
357 | cl, evec0,((step)[0] = (cl)*(evec0)[0] + ((1-cl)*(1-tfx->wPunct))*(vin )[0] + ((1-cl)*tfx->wPunct)*(vout)[0], (step)[1] = (cl)*(evec0 )[1] + ((1-cl)*(1-tfx->wPunct))*(vin)[1] + ((1-cl)*tfx-> wPunct)*(vout)[1], (step)[2] = (cl)*(evec0)[2] + ((1-cl)*(1-tfx ->wPunct))*(vin)[2] + ((1-cl)*tfx->wPunct)*(vout)[2]) |
358 | (1-cl)*(1-tfx->wPunct), vin,((step)[0] = (cl)*(evec0)[0] + ((1-cl)*(1-tfx->wPunct))*(vin )[0] + ((1-cl)*tfx->wPunct)*(vout)[0], (step)[1] = (cl)*(evec0 )[1] + ((1-cl)*(1-tfx->wPunct))*(vin)[1] + ((1-cl)*tfx-> wPunct)*(vout)[1], (step)[2] = (cl)*(evec0)[2] + ((1-cl)*(1-tfx ->wPunct))*(vin)[2] + ((1-cl)*tfx->wPunct)*(vout)[2]) |
359 | (1-cl)*tfx->wPunct, vout)((step)[0] = (cl)*(evec0)[0] + ((1-cl)*(1-tfx->wPunct))*(vin )[0] + ((1-cl)*tfx->wPunct)*(vout)[0], (step)[1] = (cl)*(evec0 )[1] + ((1-cl)*(1-tfx->wPunct))*(vin)[1] + ((1-cl)*tfx-> wPunct)*(vout)[1], (step)[2] = (cl)*(evec0)[2] + ((1-cl)*(1-tfx ->wPunct))*(vin)[2] + ((1-cl)*tfx->wPunct)*(vout)[2]); |
360 | /* _tenFiberAlign(tfx, step); */ |
361 | ELL_3V_NORM(step, step, len)(len = (sqrt((((step))[0]*((step))[0] + ((step))[1]*((step))[ 1] + ((step))[2]*((step))[2]))), ((step)[0] = (1.0/len)*(step )[0], (step)[1] = (1.0/len)*(step)[1], (step)[2] = (1.0/len)* (step)[2])); |
362 | if (tfx->anisoSpeedType) { |
363 | _tenFiberAnisoSpeed(step, tfx->fiberAnisoSpeed, |
364 | tfx->anisoSpeedFunc); |
365 | } |
366 | } |
367 | |
368 | void |
369 | _tenFiberStep_PureLine(tenFiberContext *tfx, double step[3]) { |
370 | static const char me[]="_tenFiberStep_PureLine"; |
371 | |
372 | AIR_UNUSED(tfx)(void)(tfx); |
373 | AIR_UNUSED(step)(void)(step); |
374 | fprintf(stderr__stderrp, "%s: sorry, unimplemented!\n", me); |
375 | } |
376 | |
377 | void |
378 | _tenFiberStep_Zhukov(tenFiberContext *tfx, double step[3]) { |
379 | static const char me[]="_tenFiberStep_Zhukov"; |
380 | |
381 | AIR_UNUSED(tfx)(void)(tfx); |
382 | AIR_UNUSED(step)(void)(step); |
383 | fprintf(stderr__stderrp, "%s: sorry, unimplemented!\n", me); |
384 | } |
385 | |
386 | void (* |
387 | _tenFiberStep[TEN_FIBER_TYPE_MAX6+1])(tenFiberContext *, double *) = { |
388 | NULL((void*)0), |
389 | _tenFiberStep_Evec, |
390 | _tenFiberStep_Evec, |
391 | _tenFiberStep_Evec, |
392 | _tenFiberStep_TensorLine, |
393 | _tenFiberStep_PureLine, |
394 | _tenFiberStep_Zhukov |
395 | }; |
396 | |
397 | /* |
398 | ** ------------------------------------------------------------------- |
399 | ** ------------------------------------------------------------------- |
400 | ** The _tenFiberIntegrate_* routines must assume that |
401 | ** _tenFiberProbe(tfx, tfx->wPos, AIR_FALSE) has just been called |
402 | */ |
403 | |
404 | int |
405 | _tenFiberIntegrate_Euler(tenFiberContext *tfx, double forwDir[3]) { |
406 | |
407 | _tenFiberStep[tfx->fiberType](tfx, forwDir); |
408 | ELL_3V_SCALE(forwDir, tfx->stepSize, forwDir)((forwDir)[0] = (tfx->stepSize)*(forwDir)[0], (forwDir)[1] = (tfx->stepSize)*(forwDir)[1], (forwDir)[2] = (tfx->stepSize )*(forwDir)[2]); |
409 | return 0; |
410 | } |
411 | |
412 | int |
413 | _tenFiberIntegrate_Midpoint(tenFiberContext *tfx, double forwDir[3]) { |
414 | double loc[3], half[3]; |
415 | int gret; |
416 | |
417 | _tenFiberStep[tfx->fiberType](tfx, half); |
418 | ELL_3V_SCALE_ADD2(loc, 1, tfx->wPos, 0.5*tfx->stepSize, half)((loc)[0] = (1)*(tfx->wPos)[0] + (0.5*tfx->stepSize)*(half )[0], (loc)[1] = (1)*(tfx->wPos)[1] + (0.5*tfx->stepSize )*(half)[1], (loc)[2] = (1)*(tfx->wPos)[2] + (0.5*tfx-> stepSize)*(half)[2]); |
419 | _tenFiberProbe(tfx, &gret, loc, AIR_FALSE0); if (gret) return 1; |
420 | _tenFiberStep[tfx->fiberType](tfx, forwDir); |
421 | ELL_3V_SCALE(forwDir, tfx->stepSize, forwDir)((forwDir)[0] = (tfx->stepSize)*(forwDir)[0], (forwDir)[1] = (tfx->stepSize)*(forwDir)[1], (forwDir)[2] = (tfx->stepSize )*(forwDir)[2]); |
422 | return 0; |
423 | } |
424 | |
425 | int |
426 | _tenFiberIntegrate_RK4(tenFiberContext *tfx, double forwDir[3]) { |
427 | double loc[3], k1[3], k2[3], k3[3], k4[3], c1, c2, c3, c4, h; |
428 | int gret; |
429 | |
430 | h = tfx->stepSize; |
431 | c1 = h/6.0; c2 = h/3.0; c3 = h/3.0; c4 = h/6.0; |
432 | |
433 | _tenFiberStep[tfx->fiberType](tfx, k1); |
434 | ELL_3V_SCALE_ADD2(loc, 1, tfx->wPos, 0.5*h, k1)((loc)[0] = (1)*(tfx->wPos)[0] + (0.5*h)*(k1)[0], (loc)[1] = (1)*(tfx->wPos)[1] + (0.5*h)*(k1)[1], (loc)[2] = (1)*(tfx ->wPos)[2] + (0.5*h)*(k1)[2]); |
435 | _tenFiberProbe(tfx, &gret, loc, AIR_FALSE0); if (gret) return 1; |
436 | _tenFiberStep[tfx->fiberType](tfx, k2); |
437 | ELL_3V_SCALE_ADD2(loc, 1, tfx->wPos, 0.5*h, k2)((loc)[0] = (1)*(tfx->wPos)[0] + (0.5*h)*(k2)[0], (loc)[1] = (1)*(tfx->wPos)[1] + (0.5*h)*(k2)[1], (loc)[2] = (1)*(tfx ->wPos)[2] + (0.5*h)*(k2)[2]); |
438 | _tenFiberProbe(tfx, &gret, loc, AIR_FALSE0); if (gret) return 1; |
439 | _tenFiberStep[tfx->fiberType](tfx, k3); |
440 | ELL_3V_SCALE_ADD2(loc, 1, tfx->wPos, h, k3)((loc)[0] = (1)*(tfx->wPos)[0] + (h)*(k3)[0], (loc)[1] = ( 1)*(tfx->wPos)[1] + (h)*(k3)[1], (loc)[2] = (1)*(tfx->wPos )[2] + (h)*(k3)[2]); |
441 | _tenFiberProbe(tfx, &gret, loc, AIR_FALSE0); if (gret) return 1; |
442 | _tenFiberStep[tfx->fiberType](tfx, k4); |
443 | |
444 | ELL_3V_SET(forwDir,((forwDir)[0] = (c1*k1[0] + c2*k2[0] + c3*k3[0] + c4*k4[0]), ( forwDir)[1] = (c1*k1[1] + c2*k2[1] + c3*k3[1] + c4*k4[1]), (forwDir )[2] = (c1*k1[2] + c2*k2[2] + c3*k3[2] + c4*k4[2])) |
445 | c1*k1[0] + c2*k2[0] + c3*k3[0] + c4*k4[0],((forwDir)[0] = (c1*k1[0] + c2*k2[0] + c3*k3[0] + c4*k4[0]), ( forwDir)[1] = (c1*k1[1] + c2*k2[1] + c3*k3[1] + c4*k4[1]), (forwDir )[2] = (c1*k1[2] + c2*k2[2] + c3*k3[2] + c4*k4[2])) |
446 | c1*k1[1] + c2*k2[1] + c3*k3[1] + c4*k4[1],((forwDir)[0] = (c1*k1[0] + c2*k2[0] + c3*k3[0] + c4*k4[0]), ( forwDir)[1] = (c1*k1[1] + c2*k2[1] + c3*k3[1] + c4*k4[1]), (forwDir )[2] = (c1*k1[2] + c2*k2[2] + c3*k3[2] + c4*k4[2])) |
447 | c1*k1[2] + c2*k2[2] + c3*k3[2] + c4*k4[2])((forwDir)[0] = (c1*k1[0] + c2*k2[0] + c3*k3[0] + c4*k4[0]), ( forwDir)[1] = (c1*k1[1] + c2*k2[1] + c3*k3[1] + c4*k4[1]), (forwDir )[2] = (c1*k1[2] + c2*k2[2] + c3*k3[2] + c4*k4[2])); |
448 | |
449 | return 0; |
450 | } |
451 | |
452 | int (* |
453 | _tenFiberIntegrate[TEN_FIBER_INTG_MAX3+1])(tenFiberContext *tfx, double *) = { |
454 | NULL((void*)0), |
455 | _tenFiberIntegrate_Euler, |
456 | _tenFiberIntegrate_Midpoint, |
457 | _tenFiberIntegrate_RK4 |
458 | }; |
459 | |
460 | /* |
461 | ** modified body of previous tenFiberTraceSet, in order to |
462 | ** permit passing the nval for storing desired probed values |
463 | */ |
464 | static int |
465 | _fiberTraceSet(tenFiberContext *tfx, Nrrd *nval, Nrrd *nfiber, |
466 | double *buff, unsigned int halfBuffLen, |
467 | unsigned int *startIdxP, unsigned int *endIdxP, |
468 | double seed[3]) { |
469 | static const char me[]="_fiberTraceSet"; |
470 | airArray *fptsArr[2], /* airArrays of backward (0) and forward (1) |
471 | fiber points */ |
472 | *pansArr[2]; /* airArrays of backward (0) and forward (1) |
473 | probed values */ |
474 | double *fpts[2], /* arrays storing forward and backward |
475 | fiber points */ |
476 | *pans[2], /* arrays storing forward and backward |
477 | probed values */ |
478 | tmp[3], |
479 | iPos[3], |
480 | currPoint[3], |
481 | forwDir[3], |
482 | *fiber, /* array of both forward and backward points, |
483 | when finished */ |
484 | *valOut; /* same for probed values */ |
485 | const double *pansP; /* pointer to gage's probed values */ |
486 | |
487 | int gret, whyStop, buffIdx, fptsIdx, pansIdx, outIdx, oldStop, keepfiber; |
488 | unsigned int i, pansLen; |
489 | airArray *mop; |
490 | airPtrPtrUnion appu; |
491 | |
492 | if (!(tfx)) { |
493 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
494 | return 1; |
495 | } |
496 | if (nval) { |
497 | if (!tfx->fiberProbeItem) { |
498 | biffAddf(TENtenBiffKey, "%s: want to record probed values but no item set", me); |
499 | return 1; |
500 | } |
501 | pansLen = gageAnswerLength(tfx->gtx, tfx->pvl, tfx->fiberProbeItem); |
502 | pansP = gageAnswerPointer(tfx->gtx, tfx->pvl, tfx->fiberProbeItem); |
503 | } else { |
504 | pansLen = 0; |
505 | pansP = NULL((void*)0); |
506 | } |
507 | /* |
508 | fprintf(stderr, "!%s: =========================== \n", me); |
509 | fprintf(stderr, "!%s: \n", me); |
510 | fprintf(stderr, "!%s: item %d -> pansLen = %u\n", me, |
511 | tfx->fiberProbeItem, pansLen); |
512 | fprintf(stderr, "!%s: \n", me); |
513 | fprintf(stderr, "!%s: =========================== \n", me); |
514 | */ |
515 | |
516 | /* HEY: a hack to preserve the state inside tenFiberContext so that |
517 | we have fewer side effects (tfx->maxNumSteps may still be set) */ |
518 | oldStop = tfx->stop; |
519 | if (!nfiber) { |
520 | if (!( buff && halfBuffLen > 0 && startIdxP && startIdxP )) { |
521 | biffAddf(TENtenBiffKey, "%s: need either non-NULL nfiber or fpts buffer info", me); |
522 | return 1; |
523 | } |
524 | if (tenFiberStopSet(tfx, tenFiberStopNumSteps, halfBuffLen)) { |
525 | biffAddf(TENtenBiffKey, "%s: error setting new fiber stop", me); |
526 | return 1; |
527 | } |
528 | } |
529 | |
530 | /* initialize the quantities which describe the fiber halves */ |
531 | tfx->halfLen[0] = tfx->halfLen[1] = 0.0; |
532 | tfx->numSteps[0] = tfx->numSteps[1] = 0; |
533 | tfx->whyStop[0] = tfx->whyStop[1] = tenFiberStopUnknown; |
534 | /* |
535 | fprintf(stderr, "!%s: try probing once, at seed %g %g %g\n", me, |
536 | seed[0], seed[1], seed[2]); |
537 | */ |
538 | /* try probing once, at seed point */ |
539 | if (tfx->useIndexSpace) { |
540 | gageShapeItoW(tfx->gtx->shape, tmp, seed); |
541 | } else { |
542 | ELL_3V_COPY(tmp, seed)((tmp)[0] = (seed)[0], (tmp)[1] = (seed)[1], (tmp)[2] = (seed )[2]); |
543 | } |
544 | if (_tenFiberProbe(tfx, &gret, tmp, AIR_TRUE1)) { |
545 | biffAddf(TENtenBiffKey, "%s: first _tenFiberProbe failed", me); |
546 | return 1; |
547 | } |
548 | if (gret) { |
549 | if (gageErrBoundsSpace != tfx->gtx->errNum) { |
550 | biffAddf(TENtenBiffKey, "%s: gage problem on first _tenFiberProbe: %s (%d)", |
551 | me, tfx->gtx->errStr, tfx->gtx->errNum); |
552 | return 1; |
553 | } else { |
554 | /* the problem on the first probe was that it was out of bounds, |
555 | which is not a catastrophe; its handled the same as below */ |
556 | tfx->whyNowhere = tenFiberStopBounds; |
557 | if (nval) { |
558 | nrrdEmpty(nval); |
559 | } |
560 | if (nfiber) { |
561 | nrrdEmpty(nfiber); |
562 | } else { |
563 | *startIdxP = *endIdxP = 0; |
564 | } |
565 | return 0; |
566 | } |
567 | } |
568 | |
569 | /* see if we're doomed (tract dies before it gets anywhere) */ |
570 | /* have to fake out the possible radius check, since at this point |
571 | there is no radius of curvature; this will always pass */ |
572 | tfx->radius = DBL_MAX1.7976931348623157e+308; |
573 | if ((whyStop = _tenFiberStopCheck(tfx))) { |
574 | /* stopped immediately at seed point, but that's not an error */ |
575 | tfx->whyNowhere = whyStop; |
576 | if (nval) { |
577 | nrrdEmpty(nval); |
578 | } |
579 | if (nfiber) { |
580 | nrrdEmpty(nfiber); |
581 | } else { |
582 | *startIdxP = *endIdxP = 0; |
583 | } |
584 | return 0; |
585 | } else { |
586 | /* did not immediately halt */ |
587 | tfx->whyNowhere = tenFiberStopUnknown; |
588 | } |
589 | |
590 | /* airMop{Error,Okay}() can safely be called on NULL */ |
591 | mop = (nfiber || nval) ? airMopNew() : NULL((void*)0); |
592 | |
593 | for (tfx->halfIdx=0; tfx->halfIdx<=1; tfx->halfIdx++) { |
594 | if (nval) { |
595 | appu.d = &(pans[tfx->halfIdx]); |
596 | pansArr[tfx->halfIdx] = airArrayNew(appu.v, NULL((void*)0), |
597 | pansLen*sizeof(double), |
598 | TEN_FIBER_INCR512); |
599 | airMopAdd(mop, pansArr[tfx->halfIdx], |
600 | (airMopper)airArrayNuke, airMopAlways); |
601 | } else { |
602 | pansArr[tfx->halfIdx] = NULL((void*)0); |
603 | } |
604 | pansIdx = -1; |
605 | if (nfiber) { |
606 | appu.d = &(fpts[tfx->halfIdx]); |
607 | fptsArr[tfx->halfIdx] = airArrayNew(appu.v, NULL((void*)0), |
608 | 3*sizeof(double), TEN_FIBER_INCR512); |
609 | airMopAdd(mop, fptsArr[tfx->halfIdx], |
610 | (airMopper)airArrayNuke, airMopAlways); |
611 | buffIdx = -1; |
612 | } else { |
613 | fptsArr[tfx->halfIdx] = NULL((void*)0); |
614 | fpts[tfx->halfIdx] = NULL((void*)0); |
615 | buffIdx = halfBuffLen; |
616 | } |
617 | fptsIdx = -1; |
Value stored to 'fptsIdx' is never read | |
618 | tfx->halfLen[tfx->halfIdx] = 0; |
619 | if (tfx->useIndexSpace) { |
620 | ELL_3V_COPY(iPos, seed)((iPos)[0] = (seed)[0], (iPos)[1] = (seed)[1], (iPos)[2] = (seed )[2]); |
621 | gageShapeItoW(tfx->gtx->shape, tfx->wPos, iPos); |
622 | } else { |
623 | /* |
624 | fprintf(stderr, "!%s(A): %p %p %p\n", me, |
625 | tfx->gtx->shape, iPos, seed); |
626 | */ |
627 | gageShapeWtoI(tfx->gtx->shape, iPos, seed); |
628 | ELL_3V_COPY(tfx->wPos, seed)((tfx->wPos)[0] = (seed)[0], (tfx->wPos)[1] = (seed)[1] , (tfx->wPos)[2] = (seed)[2]); |
629 | } |
630 | /* have to initially pass the possible radius check in |
631 | _tenFiberStopCheck(); this will always pass */ |
632 | tfx->radius = DBL_MAX1.7976931348623157e+308; |
633 | ELL_3V_SET(tfx->lastDir, 0, 0, 0)((tfx->lastDir)[0] = (0), (tfx->lastDir)[1] = (0), (tfx ->lastDir)[2] = (0)); |
634 | tfx->lastDirSet = AIR_FALSE0; |
635 | for (tfx->numSteps[tfx->halfIdx] = 0; |
636 | AIR_TRUE1; |
637 | tfx->numSteps[tfx->halfIdx]++) { |
638 | _tenFiberProbe(tfx, &gret, tfx->wPos, AIR_FALSE0); |
639 | if (gret) { |
640 | /* even if gageProbe had an error OTHER than going out of bounds, |
641 | we're not going to report it any differently here, alas */ |
642 | tfx->whyStop[tfx->halfIdx] = tenFiberStopBounds; |
643 | /* |
644 | fprintf(stderr, "!%s: A tfx->whyStop[%d] = %s\n", me, tfx->halfIdx, |
645 | airEnumStr(tenFiberStop, tfx->whyStop[tfx->halfIdx])); |
646 | */ |
647 | break; |
648 | } |
649 | if ((whyStop = _tenFiberStopCheck(tfx))) { |
650 | if (tenFiberStopNumSteps == whyStop) { |
651 | /* we stopped along this direction because |
652 | tfx->numSteps[tfx->halfIdx] exceeded tfx->maxNumSteps. |
653 | Okay. But tfx->numSteps[tfx->halfIdx] is supposed to be |
654 | a record of how steps were (successfully) taken. So we |
655 | need to decrementing before moving on ... */ |
656 | tfx->numSteps[tfx->halfIdx]--; |
657 | } |
658 | tfx->whyStop[tfx->halfIdx] = whyStop; |
659 | /* |
660 | fprintf(stderr, "!%s: B tfx->whyStop[%d] = %s\n", me, tfx->halfIdx, |
661 | airEnumStr(tenFiberStop, tfx->whyStop[tfx->halfIdx])); |
662 | */ |
663 | break; |
664 | } |
665 | if (tfx->useIndexSpace) { |
666 | /* |
667 | fprintf(stderr, "!%s(B): %p %p %p\n", me, |
668 | tfx->gtx->shape, iPos, tfx->wPos); |
669 | */ |
670 | gageShapeWtoI(tfx->gtx->shape, iPos, tfx->wPos); |
671 | ELL_3V_COPY(currPoint, iPos)((currPoint)[0] = (iPos)[0], (currPoint)[1] = (iPos)[1], (currPoint )[2] = (iPos)[2]); |
672 | } else { |
673 | ELL_3V_COPY(currPoint, tfx->wPos)((currPoint)[0] = (tfx->wPos)[0], (currPoint)[1] = (tfx-> wPos)[1], (currPoint)[2] = (tfx->wPos)[2]); |
674 | } |
675 | if (nval) { |
676 | pansIdx = airArrayLenIncr(pansArr[tfx->halfIdx], 1); |
677 | /* HEY: speed this up */ |
678 | memcpy(pans[tfx->halfIdx] + pansLen*pansIdx, pansP,__builtin___memcpy_chk (pans[tfx->halfIdx] + pansLen*pansIdx , pansP, pansLen*sizeof(double), __builtin_object_size (pans[ tfx->halfIdx] + pansLen*pansIdx, 0)) |
679 | pansLen*sizeof(double))__builtin___memcpy_chk (pans[tfx->halfIdx] + pansLen*pansIdx , pansP, pansLen*sizeof(double), __builtin_object_size (pans[ tfx->halfIdx] + pansLen*pansIdx, 0)); |
680 | /* |
681 | fprintf(stderr, "!%s: (dir %d) saving to %d: %g @ (%g,%g,%g)\n", me, |
682 | tfx->halfIdx, pansIdx, pansP[0], |
683 | currPoint[0], currPoint[1], currPoint[2]); |
684 | */ |
685 | } |
686 | if (nfiber) { |
687 | fptsIdx = airArrayLenIncr(fptsArr[tfx->halfIdx], 1); |
688 | ELL_3V_COPY(fpts[tfx->halfIdx] + 3*fptsIdx, currPoint)((fpts[tfx->halfIdx] + 3*fptsIdx)[0] = (currPoint)[0], (fpts [tfx->halfIdx] + 3*fptsIdx)[1] = (currPoint)[1], (fpts[tfx ->halfIdx] + 3*fptsIdx)[2] = (currPoint)[2]); |
689 | } else { |
690 | ELL_3V_COPY(buff + 3*buffIdx, currPoint)((buff + 3*buffIdx)[0] = (currPoint)[0], (buff + 3*buffIdx)[1 ] = (currPoint)[1], (buff + 3*buffIdx)[2] = (currPoint)[2]); |
691 | /* |
692 | fprintf(stderr, "!%s: (dir %d) saving to %d pnt %g %g %g\n", me, |
693 | tfx->halfIdx, buffIdx, |
694 | currPoint[0], currPoint[1], currPoint[2]); |
695 | */ |
696 | buffIdx += !tfx->halfIdx ? -1 : 1; |
697 | } |
698 | /* forwDir is set by this to point to the next fiber point */ |
699 | if (_tenFiberIntegrate[tfx->intg](tfx, forwDir)) { |
700 | tfx->whyStop[tfx->halfIdx] = tenFiberStopBounds; |
701 | /* |
702 | fprintf(stderr, "!%s: C tfx->whyStop[%d] = %s\n", me, tfx->halfIdx, |
703 | airEnumStr(tenFiberStop, tfx->whyStop[tfx->halfIdx])); |
704 | */ |
705 | break; |
706 | } |
707 | /* |
708 | fprintf(stderr, "!%s: forwDir = %g %g %g\n", me, |
709 | forwDir[0], forwDir[1], forwDir[2]); |
710 | */ |
711 | if (tfx->stop & (1 << tenFiberStopRadius)) { |
712 | /* some more work required to compute radius of curvature */ |
713 | double svec[3], dvec[3], SS, DD, dlen; /* sum,diff length squared */ |
714 | /* tfx->lastDir and forwDir are not normalized to unit-length */ |
715 | if (tfx->lastDirSet) { |
716 | ELL_3V_ADD2(svec, tfx->lastDir, forwDir)((svec)[0] = (tfx->lastDir)[0] + (forwDir)[0], (svec)[1] = (tfx->lastDir)[1] + (forwDir)[1], (svec)[2] = (tfx->lastDir )[2] + (forwDir)[2]); |
717 | ELL_3V_SUB(dvec, tfx->lastDir, forwDir)((dvec)[0] = (tfx->lastDir)[0] - (forwDir)[0], (dvec)[1] = (tfx->lastDir)[1] - (forwDir)[1], (dvec)[2] = (tfx->lastDir )[2] - (forwDir)[2]); |
718 | SS = ELL_3V_DOT(svec, svec)((svec)[0]*(svec)[0] + (svec)[1]*(svec)[1] + (svec)[2]*(svec) [2]); |
719 | DD = ELL_3V_DOT(dvec, dvec)((dvec)[0]*(dvec)[0] + (dvec)[1]*(dvec)[1] + (dvec)[2]*(dvec) [2]); |
720 | /* Sun Nov 2 00:04:05 EDT 2008: GLK can't recover how he |
721 | derived this, and can't see why it would be corrrect, |
722 | even though it seems to work correctly... |
723 | tfx->radius = sqrt(SS*(SS+DD)/DD)/4; |
724 | */ |
725 | dlen = sqrt(DD); |
726 | tfx->radius = dlen ? (SS + DD)/(4*dlen) : DBL_MAX1.7976931348623157e+308; |
727 | } else { |
728 | tfx->radius = DBL_MAX1.7976931348623157e+308; |
729 | } |
730 | } |
731 | /* |
732 | if (!tfx->lastDirSet) { |
733 | fprintf(stderr, "!%s: now setting lastDirSet to (%g,%g,%g)\n", me, |
734 | forwDir[0], forwDir[1], forwDir[2]); |
735 | } |
736 | */ |
737 | ELL_3V_COPY(tfx->lastDir, forwDir)((tfx->lastDir)[0] = (forwDir)[0], (tfx->lastDir)[1] = ( forwDir)[1], (tfx->lastDir)[2] = (forwDir)[2]); |
738 | tfx->lastDirSet = AIR_TRUE1; |
739 | ELL_3V_ADD2(tfx->wPos, tfx->wPos, forwDir)((tfx->wPos)[0] = (tfx->wPos)[0] + (forwDir)[0], (tfx-> wPos)[1] = (tfx->wPos)[1] + (forwDir)[1], (tfx->wPos)[2 ] = (tfx->wPos)[2] + (forwDir)[2]); |
740 | tfx->halfLen[tfx->halfIdx] += ELL_3V_LEN(forwDir)(sqrt((((forwDir))[0]*((forwDir))[0] + ((forwDir))[1]*((forwDir ))[1] + ((forwDir))[2]*((forwDir))[2]))); |
741 | } |
742 | } |
743 | |
744 | keepfiber = AIR_TRUE1; |
745 | if ((tfx->stop & (1 << tenFiberStopStub)) |
746 | && (2 == fptsArr[0]->len + fptsArr[1]->len)) { |
747 | /* seed point was actually valid, but neither half got anywhere, |
748 | and the user has set tenFiberStopStub, so we report this as |
749 | a non-starter, via tfx->whyNowhere. */ |
750 | tfx->whyNowhere = tenFiberStopStub; |
751 | keepfiber = AIR_FALSE0; |
752 | } |
753 | if ((tfx->stop & (1 << tenFiberStopMinNumSteps)) |
754 | && (fptsArr[0]->len + fptsArr[1]->len < tfx->minNumSteps)) { |
755 | /* whole fiber didn't have enough steps */ |
756 | tfx->whyNowhere = tenFiberStopMinNumSteps; |
757 | keepfiber = AIR_FALSE0; |
758 | } |
759 | if ((tfx->stop & (1 << tenFiberStopMinLength)) |
760 | && (tfx->halfLen[0] + tfx->halfLen[1] < tfx->minWholeLen)) { |
761 | /* whole fiber wasn't long enough */ |
762 | tfx->whyNowhere = tenFiberStopMinLength; |
763 | keepfiber = AIR_FALSE0; |
764 | } |
765 | if (!keepfiber) { |
766 | /* for the curious, tfx->whyStop[0,1], tfx->numSteps[0,1], and |
767 | tfx->halfLen[1,2] remain set, from above */ |
768 | if (nval) { |
769 | nrrdEmpty(nval); |
770 | } |
771 | if (nfiber) { |
772 | nrrdEmpty(nfiber); |
773 | } else { |
774 | *startIdxP = *endIdxP = 0; |
775 | } |
776 | } else { |
777 | if (nval) { |
778 | if (nrrdMaybeAlloc_va(nval, nrrdTypeDouble, 2, |
779 | AIR_CAST(size_t, pansLen)((size_t)(pansLen)), |
780 | AIR_CAST(size_t, (pansArr[0]->len((size_t)((pansArr[0]->len + pansArr[1]->len - 1))) |
781 | + pansArr[1]->len - 1))((size_t)((pansArr[0]->len + pansArr[1]->len - 1))))) { |
782 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate probed value nrrd", me); |
783 | airMopError(mop); return 1; |
784 | } |
785 | valOut = AIR_CAST(double*, nval->data)((double*)(nval->data)); |
786 | outIdx = 0; |
787 | /* HEY: speed up memcpy */ |
788 | for (i=pansArr[0]->len-1; i>=1; i--) { |
789 | memcpy(valOut + pansLen*outIdx, pans[0] + pansLen*i,__builtin___memcpy_chk (valOut + pansLen*outIdx, pans[0] + pansLen *i, pansLen*sizeof(double), __builtin_object_size (valOut + pansLen *outIdx, 0)) |
790 | pansLen*sizeof(double))__builtin___memcpy_chk (valOut + pansLen*outIdx, pans[0] + pansLen *i, pansLen*sizeof(double), __builtin_object_size (valOut + pansLen *outIdx, 0)); |
791 | outIdx++; |
792 | } |
793 | for (i=0; i<=pansArr[1]->len-1; i++) { |
794 | memcpy(valOut + pansLen*outIdx, pans[1] + pansLen*i,__builtin___memcpy_chk (valOut + pansLen*outIdx, pans[1] + pansLen *i, pansLen*sizeof(double), __builtin_object_size (valOut + pansLen *outIdx, 0)) |
795 | pansLen*sizeof(double))__builtin___memcpy_chk (valOut + pansLen*outIdx, pans[1] + pansLen *i, pansLen*sizeof(double), __builtin_object_size (valOut + pansLen *outIdx, 0)); |
796 | outIdx++; |
797 | } |
798 | } |
799 | if (nfiber) { |
800 | if (nrrdMaybeAlloc_va(nfiber, nrrdTypeDouble, 2, |
801 | AIR_CAST(size_t, 3)((size_t)(3)), |
802 | AIR_CAST(size_t, (fptsArr[0]->len((size_t)((fptsArr[0]->len + fptsArr[1]->len - 1))) |
803 | + fptsArr[1]->len - 1))((size_t)((fptsArr[0]->len + fptsArr[1]->len - 1))))) { |
804 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate fiber nrrd", me); |
805 | airMopError(mop); return 1; |
806 | } |
807 | fiber = AIR_CAST(double*, nfiber->data)((double*)(nfiber->data)); |
808 | outIdx = 0; |
809 | for (i=fptsArr[0]->len-1; i>=1; i--) { |
810 | ELL_3V_COPY(fiber + 3*outIdx, fpts[0] + 3*i)((fiber + 3*outIdx)[0] = (fpts[0] + 3*i)[0], (fiber + 3*outIdx )[1] = (fpts[0] + 3*i)[1], (fiber + 3*outIdx)[2] = (fpts[0] + 3*i)[2]); |
811 | outIdx++; |
812 | } |
813 | for (i=0; i<=fptsArr[1]->len-1; i++) { |
814 | ELL_3V_COPY(fiber + 3*outIdx, fpts[1] + 3*i)((fiber + 3*outIdx)[0] = (fpts[1] + 3*i)[0], (fiber + 3*outIdx )[1] = (fpts[1] + 3*i)[1], (fiber + 3*outIdx)[2] = (fpts[1] + 3*i)[2]); |
815 | outIdx++; |
816 | } |
817 | } else { |
818 | *startIdxP = halfBuffLen - tfx->numSteps[0]; |
819 | *endIdxP = halfBuffLen + tfx->numSteps[1]; |
820 | } |
821 | } |
822 | |
823 | tfx->stop = oldStop; |
824 | airMopOkay(mop); |
825 | return 0; |
826 | } |
827 | |
828 | /* |
829 | ******** tenFiberTraceSet |
830 | ** |
831 | ** slightly more flexible API for fiber tracking than tenFiberTrace |
832 | ** |
833 | ** EITHER: pass a non-NULL nfiber, and NULL, 0, NULL, NULL for |
834 | ** the following arguments, and things are the same as with tenFiberTrace: |
835 | ** data inside the nfiber is allocated, and the tract vertices are copied |
836 | ** into it, having been stored in dynamically allocated airArrays |
837 | ** |
838 | ** OR: pass a NULL nfiber, and a buff allocated for 3*(2*halfBuffLen + 1) |
839 | ** (note the "+ 1" !!!) doubles. The fiber tracking on each half will stop |
840 | ** at halfBuffLen points. The given seedpoint will be stored in |
841 | ** buff[0,1,2 + 3*halfBuffLen]. The linear (1-D) indices for the end of |
842 | ** the first tract half, and the end of the second tract half, will be set in |
843 | ** *startIdxP and *endIdxP respectively (this does not include a multiply |
844 | ** by 3) |
845 | ** |
846 | ** it is worth pointing out here that internally, all tractography is done |
847 | ** in gage's world space, regardless of tfx->useIndexSpace. The conversion |
848 | ** from/to index is space (if tfx->useIndexSpace is non-zero) is only done |
849 | ** for seedpoints and when fiber vertices are saved out, respectively. |
850 | ** |
851 | ** As of Sun Aug 1 20:40:55 CDT 2010 this is just a wrapper around |
852 | ** _fiberTraceSet; this will probably change in Teem 2.0 |
853 | */ |
854 | int |
855 | tenFiberTraceSet(tenFiberContext *tfx, Nrrd *nfiber, |
856 | double *buff, unsigned int halfBuffLen, |
857 | unsigned int *startIdxP, unsigned int *endIdxP, |
858 | double seed[3]) { |
859 | static const char me[]="tenFiberTraceSet"; |
860 | |
861 | if (_fiberTraceSet(tfx, NULL((void*)0), nfiber, buff, halfBuffLen, |
862 | startIdxP, endIdxP, seed)) { |
863 | biffAddf(TENtenBiffKey, "%s: problem", me); |
864 | return 1; |
865 | } |
866 | |
867 | return 0; |
868 | } |
869 | |
870 | /* |
871 | ******** tenFiberTrace |
872 | ** |
873 | ** takes a starting position in index or world space, depending on the |
874 | ** value of tfx->useIndexSpace |
875 | */ |
876 | int |
877 | tenFiberTrace(tenFiberContext *tfx, Nrrd *nfiber, double seed[3]) { |
878 | static const char me[]="tenFiberTrace"; |
879 | |
880 | if (_fiberTraceSet(tfx, NULL((void*)0), nfiber, NULL((void*)0), 0, NULL((void*)0), NULL((void*)0), seed)) { |
881 | biffAddf(TENtenBiffKey, "%s: problem computing tract", me); |
882 | return 1; |
883 | } |
884 | |
885 | return 0; |
886 | } |
887 | |
888 | /* |
889 | ******** tenFiberDirectionNumber |
890 | ** |
891 | ** NOTE: for the time being, a return of zero indicates an error, not |
892 | ** that we're being clever and detect that the seedpoint is in such |
893 | ** isotropy that no directions are possible (though such cleverness |
894 | ** will hopefully be implemented soon) |
895 | */ |
896 | unsigned int |
897 | tenFiberDirectionNumber(tenFiberContext *tfx, double seed[3]) { |
898 | static const char me[]="tenFiberDirectionNumber"; |
899 | unsigned int ret; |
900 | |
901 | if (!(tfx && seed)) { |
902 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
903 | return 0; |
904 | } |
905 | |
906 | /* HEY: eventually this stuff will be specific to the seedpoint ... */ |
907 | |
908 | if (tfx->useDwi) { |
909 | switch (tfx->fiberType) { |
910 | case tenDwiFiberType1Evec0: |
911 | ret = 1; |
912 | break; |
913 | case tenDwiFiberType2Evec0: |
914 | ret = 2; |
915 | break; |
916 | case tenDwiFiberType12BlendEvec0: |
917 | biffAddf(TENtenBiffKey, "%s: sorry, type %s not yet implemented", me, |
918 | airEnumStr(tenDwiFiberType, tenDwiFiberType12BlendEvec0)); |
919 | ret = 0; |
920 | break; |
921 | default: |
922 | biffAddf(TENtenBiffKey, "%s: type %d unknown!", me, tfx->fiberType); |
923 | ret = 0; |
924 | break; |
925 | } |
926 | } else { |
927 | /* not using DWIs */ |
928 | ret = 1; |
929 | } |
930 | |
931 | return ret; |
932 | } |
933 | |
934 | /* |
935 | ******** tenFiberSingleTrace |
936 | ** |
937 | ** fiber tracing API that uses new tenFiberSingle, as well as being |
938 | ** aware of multi-direction tractography |
939 | ** |
940 | ** NOTE: this will not try any cleverness in setting "num" |
941 | ** according to whether the seedpoint is a non-starter |
942 | */ |
943 | int |
944 | tenFiberSingleTrace(tenFiberContext *tfx, tenFiberSingle *tfbs, |
945 | double seed[3], unsigned int which) { |
946 | static const char me[]="tenFiberSingleTrace"; |
947 | |
948 | if (!(tfx && tfbs && seed)) { |
949 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
950 | return 1; |
951 | } |
952 | |
953 | /* set input fields in tfbs */ |
954 | ELL_3V_COPY(tfbs->seedPos, seed)((tfbs->seedPos)[0] = (seed)[0], (tfbs->seedPos)[1] = ( seed)[1], (tfbs->seedPos)[2] = (seed)[2]); |
955 | tfbs->dirIdx = which; |
956 | /* not our job to set tfbx->dirNum ... */ |
957 | |
958 | /* set tfbs->nvert */ |
959 | /* no harm in setting this even when there are no multiple fibers */ |
960 | tfx->ten2Which = which; |
961 | if (_fiberTraceSet(tfx, (tfx->fiberProbeItem ? tfbs->nval : NULL((void*)0)), |
962 | tfbs->nvert, NULL((void*)0), 0, NULL((void*)0), NULL((void*)0), seed)) { |
963 | biffAddf(TENtenBiffKey, "%s: problem computing tract", me); |
964 | return 1; |
965 | } |
966 | |
967 | /* set other fields based on tfx output */ |
968 | tfbs->halfLen[0] = tfx->halfLen[0]; |
969 | tfbs->halfLen[1] = tfx->halfLen[1]; |
970 | tfbs->seedIdx = tfx->numSteps[0]; |
971 | tfbs->stepNum[0] = tfx->numSteps[0]; |
972 | tfbs->stepNum[1] = tfx->numSteps[1]; |
973 | tfbs->whyStop[0] = tfx->whyStop[0]; |
974 | tfbs->whyStop[1] = tfx->whyStop[1]; |
975 | tfbs->whyNowhere = tfx->whyNowhere; |
976 | |
977 | return 0; |
978 | } |
979 | |
980 | typedef union { |
981 | tenFiberSingle **f; |
982 | void **v; |
983 | } fiberunion; |
984 | |
985 | /* uses biff */ |
986 | tenFiberMulti * |
987 | tenFiberMultiNew() { |
988 | static const char me[]="tenFiberMultiNew"; |
989 | tenFiberMulti *ret; |
990 | fiberunion tfu; |
991 | |
992 | ret = AIR_CAST(tenFiberMulti *, calloc(1, sizeof(tenFiberMulti)))((tenFiberMulti *)(calloc(1, sizeof(tenFiberMulti)))); |
993 | if (ret) { |
994 | ret->fiber = NULL((void*)0); |
995 | ret->fiberNum = 0; |
996 | tfu.f = &(ret->fiber); |
997 | ret->fiberArr = airArrayNew(tfu.v, &(ret->fiberNum), |
998 | sizeof(tenFiberSingle), 512 /* incr */); |
999 | if (ret->fiberArr) { |
1000 | airArrayStructCB(ret->fiberArr, |
1001 | AIR_CAST(void (*)(void *), tenFiberSingleInit)((void (*)(void *))(tenFiberSingleInit)), |
1002 | AIR_CAST(void (*)(void *), tenFiberSingleDone)((void (*)(void *))(tenFiberSingleDone))); |
1003 | } else { |
1004 | biffAddf(TENtenBiffKey, "%s: couldn't create airArray", me); |
1005 | return NULL((void*)0); |
1006 | } |
1007 | } else { |
1008 | biffAddf(TENtenBiffKey, "%s: couldn't create tenFiberMulti", me); |
1009 | return NULL((void*)0); |
1010 | } |
1011 | return ret; |
1012 | } |
1013 | |
1014 | int |
1015 | tenFiberMultiCheck(airArray *arr) { |
1016 | static const char me[]="tenFiberMultiCheck"; |
1017 | |
1018 | if (!arr) { |
1019 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
1020 | return 1; |
1021 | } |
1022 | if (sizeof(tenFiberSingle) != arr->unit) { |
1023 | biffAddf(TENtenBiffKey, "%s: given airArray cannot be for fibers", me); |
1024 | return 1; |
1025 | } |
1026 | if (!(AIR_CAST(void (*)(void *), tenFiberSingleInit)((void (*)(void *))(tenFiberSingleInit)) == arr->initCB |
1027 | && AIR_CAST(void (*)(void *), tenFiberSingleDone)((void (*)(void *))(tenFiberSingleDone)) == arr->doneCB)) { |
1028 | biffAddf(TENtenBiffKey, "%s: given airArray not set up with fiber callbacks", me); |
1029 | return 1; |
1030 | } |
1031 | return 0; |
1032 | } |
1033 | |
1034 | tenFiberMulti * |
1035 | tenFiberMultiNix(tenFiberMulti *tfm) { |
1036 | |
1037 | if (tfm) { |
1038 | airArrayNuke(tfm->fiberArr); |
1039 | airFree(tfm); |
1040 | } |
1041 | return NULL((void*)0); |
1042 | } |
1043 | |
1044 | /* |
1045 | ******** tenFiberMultiTrace |
1046 | ** |
1047 | ** does tractography for a list of seedpoints |
1048 | ** |
1049 | ** tfml has been returned from tenFiberMultiNew() |
1050 | */ |
1051 | int |
1052 | tenFiberMultiTrace(tenFiberContext *tfx, tenFiberMulti *tfml, |
1053 | const Nrrd *_nseed) { |
1054 | static const char me[]="tenFiberMultiTrace"; |
1055 | airArray *mop; |
1056 | const double *seedData; |
1057 | double seed[3]; |
1058 | unsigned int seedNum, seedIdx, fibrNum, dirNum, dirIdx; |
1059 | Nrrd *nseed; |
1060 | |
1061 | if (!(tfx && tfml && _nseed)) { |
1062 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
1063 | return 1; |
1064 | } |
1065 | if (tenFiberMultiCheck(tfml->fiberArr)) { |
1066 | biffAddf(TENtenBiffKey, "%s: problem with fiber array", me); |
1067 | return 1; |
1068 | } |
1069 | if (!(2 == _nseed->dim && 3 == _nseed->axis[0].size)) { |
1070 | biffAddf(TENtenBiffKey, "%s: seed list should be a 2-D (not %u-D) " |
1071 | "3-by-X (not %u-by-X) array", me, _nseed->dim, |
1072 | AIR_CAST(unsigned int, _nseed->axis[0].size)((unsigned int)(_nseed->axis[0].size))); |
1073 | return 1; |
1074 | } |
1075 | |
1076 | mop = airMopNew(); |
1077 | |
1078 | seedNum = _nseed->axis[1].size; |
1079 | if (nrrdTypeDouble == _nseed->type) { |
1080 | seedData = AIR_CAST(const double *, _nseed->data)((const double *)(_nseed->data)); |
1081 | } else { |
1082 | nseed = nrrdNew(); |
1083 | airMopAdd(mop, nseed, AIR_CAST(airMopper, nrrdNuke)((airMopper)(nrrdNuke)), airMopAlways); |
1084 | if (nrrdConvert(nseed, _nseed, nrrdTypeDouble)) { |
1085 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: couldn't convert seed list", me); |
1086 | return 1; |
1087 | } |
1088 | seedData = AIR_CAST(const double *, nseed->data)((const double *)(nseed->data)); |
1089 | } |
1090 | |
1091 | /* HEY: the correctness of the use of the airArray here is quite subtle */ |
1092 | fibrNum = 0; |
1093 | for (seedIdx=0; seedIdx<seedNum; seedIdx++) { |
1094 | dirNum = tenFiberDirectionNumber(tfx, seed); |
1095 | if (!dirNum) { |
1096 | biffAddf(TENtenBiffKey, "%s: couldn't learn dirNum at seed (%g,%g,%g)", me, |
1097 | seed[0], seed[1], seed[2]); |
1098 | return 1; |
1099 | } |
1100 | for (dirIdx=0; dirIdx<dirNum; dirIdx++) { |
1101 | if (tfx->verbose > 1) { |
1102 | fprintf(stderr__stderrp, "%s: dir %u/%u on seed %u/%u; len %u; # %u\n", |
1103 | me, dirIdx, dirNum, seedIdx, seedNum, |
1104 | tfml->fiberArr->len, fibrNum); |
1105 | } |
1106 | /* tfml->fiberArr->len can never be < fibrNum */ |
1107 | if (tfml->fiberArr->len == fibrNum) { |
1108 | airArrayLenIncr(tfml->fiberArr, 1); |
1109 | } |
1110 | ELL_3V_COPY(tfml->fiber[fibrNum].seedPos, seedData + 3*seedIdx)((tfml->fiber[fibrNum].seedPos)[0] = (seedData + 3*seedIdx )[0], (tfml->fiber[fibrNum].seedPos)[1] = (seedData + 3*seedIdx )[1], (tfml->fiber[fibrNum].seedPos)[2] = (seedData + 3*seedIdx )[2]); |
1111 | tfml->fiber[fibrNum].dirIdx = dirIdx; |
1112 | tfml->fiber[fibrNum].dirNum = dirNum; |
1113 | ELL_3V_COPY(seed, seedData + 3*seedIdx)((seed)[0] = (seedData + 3*seedIdx)[0], (seed)[1] = (seedData + 3*seedIdx)[1], (seed)[2] = (seedData + 3*seedIdx)[2]); |
1114 | if (tenFiberSingleTrace(tfx, &(tfml->fiber[fibrNum]), seed, dirIdx)) { |
1115 | biffAddf(TENtenBiffKey, "%s: trouble on seed (%g,%g,%g) %u/%u, dir %u/%u", me, |
1116 | seed[0], seed[1], seed[2], seedIdx, seedNum, dirIdx, dirNum); |
1117 | return 1; |
1118 | } |
1119 | if (tfx->verbose) { |
1120 | if (tenFiberStopUnknown == tfml->fiber[fibrNum].whyNowhere) { |
1121 | fprintf(stderr__stderrp, "%s: (%g,%g,%g) ->\n" |
1122 | " steps = %u,%u; len = %g,%g; whyStop = %s,%s\n", |
1123 | me, seed[0], seed[1], seed[2], |
1124 | tfml->fiber[fibrNum].stepNum[0], |
1125 | tfml->fiber[fibrNum].stepNum[1], |
1126 | tfml->fiber[fibrNum].halfLen[0], |
1127 | tfml->fiber[fibrNum].halfLen[1], |
1128 | airEnumStr(tenFiberStop, tfml->fiber[fibrNum].whyStop[0]), |
1129 | airEnumStr(tenFiberStop, tfml->fiber[fibrNum].whyStop[1])); |
1130 | } else { |
1131 | fprintf(stderr__stderrp, "%s: (%g,%g,%g) -> whyNowhere: %s\n", |
1132 | me, seed[0], seed[1], seed[2], |
1133 | airEnumStr(tenFiberStop, tfml->fiber[fibrNum].whyNowhere)); |
1134 | } |
1135 | } |
1136 | fibrNum++; |
1137 | } |
1138 | } |
1139 | /* if the airArray got to be its length only because of the work above, |
1140 | then the following will be a no-op. Otherwise, via the callbacks, |
1141 | it will clear out the tenFiberSingle's that we didn't create here */ |
1142 | airArrayLenSet(tfml->fiberArr, fibrNum); |
1143 | |
1144 | airMopOkay(mop); |
1145 | return 0; |
1146 | } |
1147 | |
1148 | static int |
1149 | _fiberMultiExtract(tenFiberContext *tfx, Nrrd *nval, |
1150 | limnPolyData *lpld, tenFiberMulti *tfml) { |
1151 | static const char me[]="_fiberMultiExtract"; |
1152 | unsigned int seedIdx, vertTotalNum, fiberNum, fiberIdx, vertTotalIdx, |
1153 | pansLen, pvNum; |
1154 | double *valOut; |
1155 | |
1156 | if (!(tfx && (lpld || nval) && tfml)) { |
1157 | biffAddf(TENtenBiffKey, "%s: got NULL pointer", me); |
1158 | return 1; |
1159 | } |
1160 | if (tenFiberMultiCheck(tfml->fiberArr)) { |
1161 | biffAddf(TENtenBiffKey, "%s: problem with fiber array", me); |
1162 | return 1; |
1163 | } |
1164 | if (nval) { |
1165 | if (!tfx->fiberProbeItem) { |
1166 | biffAddf(TENtenBiffKey, "%s: want probed values but no item set", me); |
1167 | return 1; |
1168 | } |
1169 | pansLen = gageAnswerLength(tfx->gtx, tfx->pvl, tfx->fiberProbeItem); |
1170 | } else { |
1171 | pansLen = 0; |
1172 | } |
1173 | /* |
1174 | fprintf(stderr, "!%s: =========================== \n", me); |
1175 | fprintf(stderr, "!%s: \n", me); |
1176 | fprintf(stderr, "!%s: item %d -> pansLen = %u\n", me, |
1177 | tfx->fiberProbeItem, pansLen); |
1178 | fprintf(stderr, "!%s: \n", me); |
1179 | fprintf(stderr, "!%s: =========================== \n", me); |
1180 | */ |
1181 | |
1182 | /* we have to count the real fibers that went somewhere, excluding |
1183 | fibers that went nowhere (counted in tfml->fiberNum) */ |
1184 | vertTotalNum = 0; |
1185 | fiberNum = 0; |
1186 | pvNum = 0; |
1187 | for (seedIdx=0; seedIdx<tfml->fiberArr->len; seedIdx++) { |
1188 | tenFiberSingle *tfs; |
1189 | tfs = tfml->fiber + seedIdx; |
1190 | if (!(tenFiberStopUnknown == tfs->whyNowhere)) { |
1191 | continue; |
1192 | } |
1193 | if (nval) { |
1194 | if (tfs->nval) { |
1195 | if (!(2 == tfs->nval->dim |
1196 | && pansLen == tfs->nval->axis[0].size |
1197 | && tfs->nvert->axis[1].size == tfs->nval->axis[1].size)) { |
1198 | biffAddf(TENtenBiffKey, "%s: fiber[%u]->nval seems wrong", me, seedIdx); |
1199 | return 1; |
1200 | } |
1201 | pvNum++; |
1202 | } |
1203 | } |
1204 | vertTotalNum += tfs->nvert->axis[1].size; |
1205 | fiberNum++; |
1206 | } |
1207 | if (nval && pvNum != fiberNum) { |
1208 | biffAddf(TENtenBiffKey, "%s: pvNum %u != fiberNum %u", me, pvNum, fiberNum); |
1209 | return 1; |
1210 | } |
1211 | |
1212 | if (nval) { |
1213 | if (nrrdMaybeAlloc_va(nval, nrrdTypeDouble, 2, |
1214 | AIR_CAST(size_t, pansLen)((size_t)(pansLen)), |
1215 | AIR_CAST(size_t, vertTotalNum)((size_t)(vertTotalNum)))) { |
1216 | biffMovef(TENtenBiffKey, NRRDnrrdBiffKey, "%s: couldn't allocate output", me); |
1217 | return 1; |
1218 | } |
1219 | valOut = AIR_CAST(double *, nval->data)((double *)(nval->data)); |
1220 | } else { |
1221 | valOut = NULL((void*)0); |
1222 | } |
1223 | if (lpld) { |
1224 | if (limnPolyDataAlloc(lpld, 0, /* no extra per-vertex info */ |
1225 | vertTotalNum, vertTotalNum, fiberNum)) { |
1226 | biffMovef(TENtenBiffKey, LIMNlimnBiffKey, "%s: couldn't allocate output", me); |
1227 | return 1; |
1228 | } |
1229 | } |
1230 | |
1231 | fiberIdx = 0; |
1232 | vertTotalIdx = 0; |
1233 | for (seedIdx=0; seedIdx<tfml->fiberArr->len; seedIdx++) { |
1234 | double *vert, *pans; |
1235 | unsigned int vertIdx, vertNum; |
1236 | tenFiberSingle *tfs; |
1237 | tfs = tfml->fiber + seedIdx; |
1238 | if (!(tenFiberStopUnknown == tfs->whyNowhere)) { |
1239 | continue; |
1240 | } |
1241 | vertNum = tfs->nvert->axis[1].size; |
1242 | pans = (nval |
1243 | ? AIR_CAST(double*, tfs->nval->data)((double*)(tfs->nval->data)) |
1244 | : NULL((void*)0)); |
1245 | vert = (lpld |
1246 | ? AIR_CAST(double*, tfs->nvert->data)((double*)(tfs->nvert->data)) |
1247 | : NULL((void*)0)); |
1248 | for (vertIdx=0; vertIdx<vertNum; vertIdx++) { |
1249 | if (lpld) { |
1250 | ELL_3V_COPY_TT(lpld->xyzw + 4*vertTotalIdx, float, vert + 3*vertIdx)((lpld->xyzw + 4*vertTotalIdx)[0] = ((float)((vert + 3*vertIdx )[0])), (lpld->xyzw + 4*vertTotalIdx)[1] = ((float)((vert + 3*vertIdx)[1])), (lpld->xyzw + 4*vertTotalIdx)[2] = ((float )((vert + 3*vertIdx)[2]))); |
1251 | (lpld->xyzw + 4*vertTotalIdx)[3] = 1.0; |
1252 | lpld->indx[vertTotalIdx] = vertTotalIdx; |
1253 | } |
1254 | if (nval) { |
1255 | /* HEY speed up memcpy */ |
1256 | memcpy(valOut + pansLen*vertTotalIdx,__builtin___memcpy_chk (valOut + pansLen*vertTotalIdx, pans + pansLen*vertIdx, pansLen*sizeof(double), __builtin_object_size (valOut + pansLen*vertTotalIdx, 0)) |
1257 | pans + pansLen*vertIdx,__builtin___memcpy_chk (valOut + pansLen*vertTotalIdx, pans + pansLen*vertIdx, pansLen*sizeof(double), __builtin_object_size (valOut + pansLen*vertTotalIdx, 0)) |
1258 | pansLen*sizeof(double))__builtin___memcpy_chk (valOut + pansLen*vertTotalIdx, pans + pansLen*vertIdx, pansLen*sizeof(double), __builtin_object_size (valOut + pansLen*vertTotalIdx, 0)); |
1259 | } |
1260 | vertTotalIdx++; |
1261 | } |
1262 | if (lpld) { |
1263 | lpld->type[fiberIdx] = limnPrimitiveLineStrip; |
1264 | lpld->icnt[fiberIdx] = vertNum; |
1265 | } |
1266 | fiberIdx++; |
1267 | } |
1268 | |
1269 | return 0; |
1270 | } |
1271 | |
1272 | /* |
1273 | ******** tenFiberMultiPolyData |
1274 | ** |
1275 | ** converts tenFiberMulti to polydata. |
1276 | ** |
1277 | ** currently the tenFiberContext *tfx arg is not used, but it will |
1278 | ** probably be needed in the future as the way that parameters to the |
1279 | ** polydata creation process are passed. |
1280 | */ |
1281 | int |
1282 | tenFiberMultiPolyData(tenFiberContext *tfx, |
1283 | limnPolyData *lpld, tenFiberMulti *tfml) { |
1284 | static const char me[]="tenFiberMultiPolyData"; |
1285 | |
1286 | if (_fiberMultiExtract(tfx, NULL((void*)0), lpld, tfml)) { |
1287 | biffAddf(TENtenBiffKey, "%s: problem", me); |
1288 | return 1; |
1289 | } |
1290 | return 0; |
1291 | } |
1292 | |
1293 | |
1294 | int |
1295 | tenFiberMultiProbeVals(tenFiberContext *tfx, |
1296 | Nrrd *nval, tenFiberMulti *tfml) { |
1297 | static const char me[]="tenFiberMultiProbeVals"; |
1298 | |
1299 | if (_fiberMultiExtract(tfx, nval, NULL((void*)0), tfml)) { |
1300 | biffAddf(TENtenBiffKey, "%s: problem", me); |
1301 | return 1; |
1302 | } |
1303 | return 0; |
1304 | } |