| File: | src/nrrd/apply1D.c |
| Location: | line 976, column 11 |
| Description: | Value stored to 'mapIdx' is never read |
| 1 | /* |
| 2 | Teem: Tools to process and visualize scientific data and images . |
| 3 | Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago |
| 4 | Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann |
| 5 | Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah |
| 6 | |
| 7 | This library is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU Lesser General Public License |
| 9 | (LGPL) as published by the Free Software Foundation; either |
| 10 | version 2.1 of the License, or (at your option) any later version. |
| 11 | The terms of redistributing and/or modifying this software also |
| 12 | include exceptions to the LGPL that facilitate static linking. |
| 13 | |
| 14 | This library is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | Lesser General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU Lesser General Public License |
| 20 | along with this library; if not, write to Free Software Foundation, Inc., |
| 21 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 22 | */ |
| 23 | |
| 24 | #include "nrrd.h" |
| 25 | #include "privateNrrd.h" |
| 26 | |
| 27 | /* |
| 28 | ** learned: even when using doubles, because of limited floating point |
| 29 | ** precision, you can get different results between quantizing |
| 30 | ** unrescaled (value directly from nrrd, map domain set to nrrd range, |
| 31 | ** as with early behavior of unu rmap) and rescaled (value from nrrd |
| 32 | ** scaled to fit in existing map domain, as with unu imap -r) value, |
| 33 | ** to the exact same index space. |
| 34 | */ |
| 35 | |
| 36 | /* |
| 37 | ** I won't try to support mapping individual values through a |
| 38 | ** colormap, as with a function evaluation on a single passed value. |
| 39 | ** That will be handled in an upcoming library... |
| 40 | */ |
| 41 | |
| 42 | /* |
| 43 | ** this identifies the different kinds of 1D maps, useful for the |
| 44 | ** functions in this file only |
| 45 | */ |
| 46 | enum { |
| 47 | kindLut=0, |
| 48 | kindRmap=1, |
| 49 | kindImap=2 |
| 50 | }; |
| 51 | |
| 52 | double |
| 53 | _nrrdApplyDomainMin(const Nrrd *nmap, int ramps, int mapAxis) { |
| 54 | double ret; |
| 55 | |
| 56 | AIR_UNUSED(ramps)(void)(ramps); |
| 57 | ret = nmap->axis[mapAxis].min; |
| 58 | ret = AIR_EXISTS(ret)(((int)(!((ret) - (ret))))) ? ret : 0; |
| 59 | return ret; |
| 60 | } |
| 61 | |
| 62 | double |
| 63 | _nrrdApplyDomainMax(const Nrrd *nmap, int ramps, int mapAxis) { |
| 64 | double ret; |
| 65 | |
| 66 | ret = nmap->axis[mapAxis].max; |
| 67 | if (!AIR_EXISTS(ret)(((int)(!((ret) - (ret)))))) { |
| 68 | ret = AIR_CAST(double, nmap->axis[mapAxis].size)((double)(nmap->axis[mapAxis].size)); |
| 69 | ret = ramps ? ret-1 : ret; |
| 70 | } |
| 71 | return ret; |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | ** _nrrdApply1DSetUp() |
| 76 | ** |
| 77 | ** some error checking and initializing needed for 1D LUTS, regular, |
| 78 | ** and irregular maps. The intent is that if this succeeds, then |
| 79 | ** there is no need for any further error checking. |
| 80 | ** |
| 81 | ** The only thing this function DOES is allocate the output nrrd, and |
| 82 | ** set meta information. The rest is just error checking. |
| 83 | ** |
| 84 | ** The given NrrdRange has to be fleshed out by the caller: it can't |
| 85 | ** be NULL, and both range->min and range->max must exist. |
| 86 | */ |
| 87 | int |
| 88 | _nrrdApply1DSetUp(Nrrd *nout, const Nrrd *nin, const NrrdRange *range, |
| 89 | const Nrrd *nmap, int kind, int typeOut, |
| 90 | int rescale, int multi) { |
| 91 | static const char me[]="_nrrdApply1DSetUp"; |
| 92 | char *mapcnt; |
| 93 | char nounStr[][AIR_STRLEN_SMALL(128+1)]={"lut", |
| 94 | "regular map", |
| 95 | "irregular map"}; |
| 96 | char mnounStr[][AIR_STRLEN_SMALL(128+1)]={"multi lut", |
| 97 | "multi regular map", |
| 98 | "multi irregular map"}; |
| 99 | /* wishful thinking */ |
| 100 | char verbStr[][AIR_STRLEN_SMALL(128+1)]={"lut", |
| 101 | "rmap", |
| 102 | "imap"}; |
| 103 | char mverbStr[][AIR_STRLEN_SMALL(128+1)]={"mlut", |
| 104 | "mrmap", |
| 105 | "mimap"}; /* wishful thinking */ |
| 106 | int mapAxis, copyMapAxis0=AIR_FALSE0, axisMap[NRRD_DIM_MAX16]; |
| 107 | unsigned int ax, dim, entLen; |
| 108 | size_t size[NRRD_DIM_MAX16]; |
| 109 | double domMin, domMax; |
| 110 | |
| 111 | if (nout == nin) { |
| 112 | biffAddf(NRRDnrrdBiffKey, "%s: due to laziness, nout==nin always disallowed", me); |
| 113 | return 1; |
| 114 | } |
| 115 | if (airEnumValCheck(nrrdType, typeOut)) { |
| 116 | biffAddf(NRRDnrrdBiffKey, "%s: invalid requested output type %d", me, typeOut); |
| 117 | return 1; |
| 118 | } |
| 119 | if (nrrdTypeBlock == nin->type || nrrdTypeBlock == typeOut) { |
| 120 | biffAddf(NRRDnrrdBiffKey, "%s: input or requested output type is %s, need scalar", |
| 121 | me, airEnumStr(nrrdType, nrrdTypeBlock)); |
| 122 | return 1; |
| 123 | } |
| 124 | if (rescale) { |
| 125 | if (!range) { |
| 126 | biffAddf(NRRDnrrdBiffKey, "%s: want rescaling but didn't get a range", me); |
| 127 | return 1; |
| 128 | } |
| 129 | if (!( AIR_EXISTS(range->min)(((int)(!((range->min) - (range->min))))) && AIR_EXISTS(range->max)(((int)(!((range->max) - (range->max))))) )) { |
| 130 | biffAddf(NRRDnrrdBiffKey, "%s: want rescaling but not both " |
| 131 | "range->{min,max} %g %g exist", me, range->min, range->max); |
| 132 | return 1; |
| 133 | } |
| 134 | /* HEY: consider adding an error check for range->min == range->max |
| 135 | here; the code below now guards |
| 136 | AIR_AFFINE(range->min, val, range->max, domMin, domMax) |
| 137 | against producing NaNs, but maybe that's too clever */ |
| 138 | } |
| 139 | if (kindLut == kind || kindRmap == kind) { |
| 140 | if (!multi) { |
| 141 | mapAxis = nmap->dim - 1; |
| 142 | if (!(0 == mapAxis || 1 == mapAxis)) { |
| 143 | biffAddf(NRRDnrrdBiffKey, "%s: dimension of %s should be 1 or 2, not %d", |
| 144 | me, nounStr[kind], nmap->dim); |
| 145 | return 1; |
| 146 | } |
| 147 | copyMapAxis0 = (1 == mapAxis); |
| 148 | } else { |
| 149 | mapAxis = nmap->dim - nin->dim - 1; |
| 150 | if (!(0 == mapAxis || 1 == mapAxis)) { |
| 151 | biffAddf(NRRDnrrdBiffKey, "%s: dimension of %s should be %d or %d, not %d", |
| 152 | me, mnounStr[kind], |
| 153 | nin->dim + 1, nin->dim + 2, nmap->dim); |
| 154 | return 1; |
| 155 | } |
| 156 | copyMapAxis0 = (1 == mapAxis); |
| 157 | /* need to make sure the relevant sizes match */ |
| 158 | for (ax=0; ax<nin->dim; ax++) { |
| 159 | unsigned int taxi = mapAxis + 1 + ax; |
| 160 | if (taxi > NRRD_DIM_MAX16-1) { |
| 161 | biffAddf(NRRDnrrdBiffKey, "%s: test axis index %u exceeds NRRD_DIM_MAX-1 %u", |
| 162 | me, taxi, NRRD_DIM_MAX16-1); |
| 163 | return 1; |
| 164 | } |
| 165 | if (nin->axis[ax].size != nmap->axis[taxi].size) { |
| 166 | char stmp1[AIR_STRLEN_SMALL(128+1)], stmp2[AIR_STRLEN_SMALL(128+1)]; |
| 167 | biffAddf(NRRDnrrdBiffKey, "%s: input and mmap don't have compatible sizes: " |
| 168 | "nin->axis[%d].size (%s) " |
| 169 | "!= nmap->axis[%d].size (%s): ", me, |
| 170 | ax, airSprintSize_t(stmp1, nin->axis[ax].size), |
| 171 | mapAxis + 1 + ax, |
| 172 | airSprintSize_t(stmp2, nmap->axis[taxi].size)); |
| 173 | return 1; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | domMin = _nrrdApplyDomainMin(nmap, AIR_FALSE0, mapAxis); |
| 178 | domMax = _nrrdApplyDomainMax(nmap, AIR_FALSE0, mapAxis); |
| 179 | if (!( domMin < domMax )) { |
| 180 | biffAddf(NRRDnrrdBiffKey, "%s: (axis %d) domain min (%g) not less than max (%g)", |
| 181 | me, mapAxis, domMin, domMax); |
| 182 | return 1; |
| 183 | } |
| 184 | if (nrrdHasNonExist(nmap)) { |
| 185 | biffAddf(NRRDnrrdBiffKey, "%s: %s nrrd has non-existent values", |
| 186 | me, multi ? mnounStr[kind] : nounStr[kind]); |
| 187 | return 1; |
| 188 | } |
| 189 | entLen = mapAxis ? AIR_CAST(unsigned int, nmap->axis[0].size)((unsigned int)(nmap->axis[0].size)) : 1; |
| 190 | } else { |
| 191 | if (multi) { |
| 192 | biffAddf(NRRDnrrdBiffKey, "%s: sorry, multi irregular maps not implemented", me); |
| 193 | return 1; |
| 194 | } |
| 195 | /* its an irregular map */ |
| 196 | if (nrrd1DIrregMapCheck(nmap)) { |
| 197 | biffAddf(NRRDnrrdBiffKey, "%s: problem with irregular map", me); |
| 198 | return 1; |
| 199 | } |
| 200 | /* mapAxis has no meaning for irregular maps, but we'll pretend ... */ |
| 201 | mapAxis = nmap->axis[0].size == 2 ? 0 : 1; |
| 202 | copyMapAxis0 = AIR_TRUE1; |
| 203 | entLen = AIR_CAST(unsigned int, nmap->axis[0].size-1)((unsigned int)(nmap->axis[0].size-1)); |
| 204 | } |
| 205 | if (mapAxis + nin->dim > NRRD_DIM_MAX16) { |
| 206 | biffAddf(NRRDnrrdBiffKey, "%s: input nrrd dim %d through non-scalar %s exceeds " |
| 207 | "NRRD_DIM_MAX %d", |
| 208 | me, nin->dim, |
| 209 | multi ? mnounStr[kind] : nounStr[kind], NRRD_DIM_MAX16); |
| 210 | return 1; |
| 211 | } |
| 212 | nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, size+mapAxis); |
| 213 | if (mapAxis) { |
| 214 | size[0] = entLen; |
| 215 | axisMap[0] = -1; |
| 216 | } |
| 217 | for (dim=0; dim<nin->dim; dim++) { |
| 218 | axisMap[dim+mapAxis] = dim; |
| 219 | } |
| 220 | /* |
| 221 | fprintf(stderr, "##%s: pre maybe alloc: nout->data = %p\n", me, nout->data); |
| 222 | for (dim=0; dim<mapAxis + nin->dim; dim++) { |
| 223 | fprintf(stderr, " size[%d] = %d\n", d, (int)size[d]); |
| 224 | } |
| 225 | fprintf(stderr, " nout->dim = %d; nout->type = %d = %s; sizes = %d,%d\n", |
| 226 | nout->dim, nout->type, |
| 227 | airEnumStr(nrrdType, nout->type)); |
| 228 | fprintf(stderr, " typeOut = %d = %s\n", typeOut, |
| 229 | airEnumStr(nrrdType, typeOut)); |
| 230 | */ |
| 231 | if (nrrdMaybeAlloc_nva(nout, typeOut, mapAxis + nin->dim, size)) { |
| 232 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't allocate output nrrd", me); |
| 233 | return 1; |
| 234 | } |
| 235 | /* |
| 236 | fprintf(stderr, " nout->dim = %d; nout->type = %d = %s\n", |
| 237 | nout->dim, nout->type, |
| 238 | airEnumStr(nrrdType, nout->type), |
| 239 | nout->axis[0].size, nout->axis[1].size); |
| 240 | for (d=0; d<nout->dim; d++) { |
| 241 | fprintf(stderr, " size[%d] = %d\n", d, (int)nout->axis[d].size); |
| 242 | } |
| 243 | fprintf(stderr, "##%s: post maybe alloc: nout->data = %p\n", me, nout->data); |
| 244 | */ |
| 245 | if (nrrdAxisInfoCopy(nout, nin, axisMap, NRRD_AXIS_INFO_NONE0)) { |
| 246 | biffAddf(NRRDnrrdBiffKey, "%s: trouble copying axis info", me); |
| 247 | return 1; |
| 248 | } |
| 249 | if (copyMapAxis0) { |
| 250 | _nrrdAxisInfoCopy(nout->axis + 0, nmap->axis + 0, |
| 251 | NRRD_AXIS_INFO_SIZE_BIT(1<< 1)); |
| 252 | } |
| 253 | |
| 254 | mapcnt = _nrrdContentGet(nmap); |
| 255 | if (nrrdContentSet_va(nout, multi ? mverbStr[kind] : verbStr[kind], |
| 256 | nin, "%s", mapcnt)) { |
| 257 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 258 | free(mapcnt); return 1; |
| 259 | } |
| 260 | free(mapcnt); |
| 261 | if (nrrdBasicInfoCopy(nout, nin, |
| 262 | NRRD_BASIC_INFO_DATA_BIT(1<< 1) |
| 263 | | NRRD_BASIC_INFO_TYPE_BIT(1<< 2) |
| 264 | | NRRD_BASIC_INFO_BLOCKSIZE_BIT(1<< 3) |
| 265 | | NRRD_BASIC_INFO_DIMENSION_BIT(1<< 4) |
| 266 | | NRRD_BASIC_INFO_CONTENT_BIT(1<< 5) |
| 267 | | (nrrdStateKeyValuePairsPropagate |
| 268 | ? 0 |
| 269 | : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT(1<<15)))) { |
| 270 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 271 | return 1; |
| 272 | } |
| 273 | return 0; |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | ** _nrrdApply1DLutOrRegMap() |
| 278 | ** |
| 279 | ** the guts of nrrdApply1DLut and nrrdApply1DRegMap |
| 280 | ** |
| 281 | ** yikes, does NOT use biff, since we're only supposed to be called |
| 282 | ** after copious error checking. |
| 283 | ** |
| 284 | ** FOR INSTANCE, this allows nout == nin, which could be a big |
| 285 | ** problem if mapAxis == 1. |
| 286 | ** |
| 287 | ** we don't need a typeOut arg because nout has already been allocated |
| 288 | ** as some specific type; we'll look at that. |
| 289 | ** |
| 290 | ** NOTE: non-existent values get passed through regular maps and luts |
| 291 | ** "unchanged". However, if the output type is integral, the results |
| 292 | ** are probaby undefined. HEY: there is currently no warning message |
| 293 | ** or error handling based on nrrdStateDisallowIntegerNonExist, but |
| 294 | ** there really should be. |
| 295 | */ |
| 296 | int |
| 297 | _nrrdApply1DLutOrRegMap(Nrrd *nout, const Nrrd *nin, const NrrdRange *range, |
| 298 | const Nrrd *nmap, int ramps, int rescale, int multi) { |
| 299 | /* static const char me[]="_nrrdApply1DLutOrRegMap"; */ |
| 300 | char *inData, *outData, *mapData, *entData0, *entData1; |
| 301 | size_t N, I; |
| 302 | double (*inLoad)(const void *v), (*mapLup)(const void *v, size_t I), |
| 303 | (*outInsert)(void *v, size_t I, double d), |
| 304 | val, mapIdxFrac, domMin, domMax; |
| 305 | unsigned int i, mapAxis, mapLen, mapIdx, entSize, entLen, inSize, outSize; |
| 306 | |
| 307 | if (!multi) { |
| 308 | mapAxis = nmap->dim - 1; /* axis of nmap containing entries */ |
| 309 | } else { |
| 310 | mapAxis = nmap->dim - nin->dim - 1; |
| 311 | } |
| 312 | mapData = (char *)nmap->data; /* map data, as char* */ |
| 313 | /* low end of map domain */ |
| 314 | domMin = _nrrdApplyDomainMin(nmap, ramps, mapAxis); |
| 315 | /* high end of map domain */ |
| 316 | domMax = _nrrdApplyDomainMax(nmap, ramps, mapAxis); |
| 317 | mapLen = AIR_CAST(unsigned int, nmap->axis[mapAxis].size)((unsigned int)(nmap->axis[mapAxis].size)); /* number of entries in map */ |
| 318 | mapLup = nrrdDLookup[nmap->type]; /* how to get doubles out of map */ |
| 319 | inData = (char *)nin->data; /* input data, as char* */ |
| 320 | inLoad = nrrdDLoad[nin->type]; /* how to get doubles out of nin */ |
| 321 | inSize = AIR_CAST(unsigned int, nrrdElementSize(nin))((unsigned int)(nrrdElementSize(nin))); /* size of one input value */ |
| 322 | outData = (char *)nout->data; /* output data, as char* */ |
| 323 | outInsert = nrrdDInsert[nout->type]; /* putting doubles into output */ |
| 324 | entLen = (mapAxis /* number of elements in one entry */ |
| 325 | ? AIR_CAST(unsigned int, nmap->axis[0].size)((unsigned int)(nmap->axis[0].size)) |
| 326 | : 1); |
| 327 | outSize = entLen*AIR_CAST(unsigned int, nrrdElementSize(nout))((unsigned int)(nrrdElementSize(nout))); /* size of entry in output */ |
| 328 | entSize = entLen*AIR_CAST(unsigned int, nrrdElementSize(nmap))((unsigned int)(nrrdElementSize(nmap))); /* size of entry in map */ |
| 329 | |
| 330 | N = nrrdElementNumber(nin); /* the number of values to be mapped */ |
| 331 | if (ramps) { |
| 332 | /* regular map */ |
| 333 | for (I=0; I<N; I++) { |
| 334 | /* ... |
| 335 | if (!(I % 100)) fprintf(stderr, "I = %d\n", (int)I); |
| 336 | ... */ |
| 337 | val = inLoad(inData); |
| 338 | /* ... |
| 339 | fprintf(stderr, "##%s: val = \na% 31.15f --> ", me, val); |
| 340 | ... */ |
| 341 | if (rescale) { |
| 342 | val = (range->min != range->max |
| 343 | ? AIR_AFFINE(range->min, val, range->max, domMin, domMax)( ((double)(domMax)-(domMin))*((double)(val)-(range->min)) / ((double)(range->max)-(range->min)) + (domMin)) |
| 344 | : domMin); |
| 345 | /* ... |
| 346 | fprintf(stderr, "\nb% 31.15f (min,max = %g,%g)--> ", val, |
| 347 | range->min, range->max); |
| 348 | ... */ |
| 349 | } |
| 350 | /* ... |
| 351 | fprintf(stderr, "\nc% 31.15f --> clamp(%g,%g), %d --> ", |
| 352 | val, domMin, domMax, mapLen); |
| 353 | ... */ |
| 354 | if (AIR_EXISTS(val)(((int)(!((val) - (val)))))) { |
| 355 | val = AIR_CLAMP(domMin, val, domMax)((val) < (domMin) ? (domMin) : ((val) > (domMax) ? (domMax ) : (val))); |
| 356 | mapIdxFrac = AIR_AFFINE(domMin, val, domMax, 0, mapLen-1)( ((double)(mapLen-1)-(0))*((double)(val)-(domMin)) / ((double )(domMax)-(domMin)) + (0)); |
| 357 | /* ... |
| 358 | fprintf(stderr, "mapIdxFrac = \nd% 31.15f --> ", |
| 359 | mapIdxFrac); |
| 360 | ... */ |
| 361 | mapIdx = (unsigned int)mapIdxFrac; |
| 362 | mapIdx -= mapIdx == mapLen-1; |
| 363 | mapIdxFrac -= mapIdx; |
| 364 | /* ... |
| 365 | fprintf(stderr, "%s: (%d,\ne% 31.15f) --> \n", |
| 366 | me, mapIdx, mapIdxFrac); |
| 367 | ... */ |
| 368 | entData0 = mapData + mapIdx*entSize; |
| 369 | entData1 = mapData + (mapIdx+1)*entSize; |
| 370 | for (i=0; i<entLen; i++) { |
| 371 | val = ((1-mapIdxFrac)*mapLup(entData0, i) + |
| 372 | mapIdxFrac*mapLup(entData1, i)); |
| 373 | outInsert(outData, i, val); |
| 374 | /* ... |
| 375 | fprintf(stderr, "f% 31.15f\n", val); |
| 376 | ... */ |
| 377 | } |
| 378 | } else { |
| 379 | /* copy non-existent values from input to output */ |
| 380 | for (i=0; i<entLen; i++) { |
| 381 | outInsert(outData, i, val); |
| 382 | } |
| 383 | } |
| 384 | inData += inSize; |
| 385 | outData += outSize; |
| 386 | if (multi) { |
| 387 | mapData += mapLen*entSize; |
| 388 | } |
| 389 | } |
| 390 | } else { |
| 391 | /* lookup table */ |
| 392 | for (I=0; I<N; I++) { |
| 393 | val = inLoad(inData); |
| 394 | if (rescale) { |
| 395 | val = (range->min != range->max |
| 396 | ? AIR_AFFINE(range->min, val, range->max, domMin, domMax)( ((double)(domMax)-(domMin))*((double)(val)-(range->min)) / ((double)(range->max)-(range->min)) + (domMin)) |
| 397 | : domMin); |
| 398 | } |
| 399 | if (AIR_EXISTS(val)(((int)(!((val) - (val)))))) { |
| 400 | mapIdx = airIndexClamp(domMin, val, domMax, mapLen); |
| 401 | entData0 = mapData + mapIdx*entSize; |
| 402 | for (i=0; i<entLen; i++) { |
| 403 | outInsert(outData, i, mapLup(entData0, i)); |
| 404 | } |
| 405 | } else { |
| 406 | /* copy non-existent values from input to output */ |
| 407 | for (i=0; i<entLen; i++) { |
| 408 | outInsert(outData, i, val); |
| 409 | } |
| 410 | } |
| 411 | inData += inSize; |
| 412 | outData += outSize; |
| 413 | if (multi) { |
| 414 | mapData += mapLen*entSize; |
| 415 | } |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | ******** nrrdApply1DLut |
| 424 | ** |
| 425 | ** A "lut" is a simple lookup table: the data points are evenly spaced, |
| 426 | ** with cell-centering assumed, and there is no interpolation except |
| 427 | ** nearest neighbor. The axis min and max are used to determine the |
| 428 | ** range of values that can be mapped with the lut. |
| 429 | ** |
| 430 | ** Of the three kinds of 1-D maps, only luts can have output type block. |
| 431 | ** |
| 432 | ** If the lut nrrd is 1-D, then the output is a scalar nrrd with the |
| 433 | ** same dimension as the input. If the lut nrrd is 2-D, then each |
| 434 | ** value in the input is mapped to a vector of values from the lut, |
| 435 | ** which is always a scanline along axis 0. |
| 436 | ** |
| 437 | ** This allows lut length to be simply 1. |
| 438 | */ |
| 439 | int |
| 440 | nrrdApply1DLut(Nrrd *nout, const Nrrd *nin, |
| 441 | const NrrdRange *_range, const Nrrd *nlut, |
| 442 | int typeOut, int rescale) { |
| 443 | static const char me[]="nrrdApply1DLut"; |
| 444 | NrrdRange *range; |
| 445 | airArray *mop; |
| 446 | |
| 447 | if (!(nout && nlut && nin)) { |
| 448 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 449 | return 1; |
| 450 | } |
| 451 | mop = airMopNew(); |
| 452 | if (_range) { |
| 453 | range = nrrdRangeCopy(_range); |
| 454 | nrrdRangeSafeSet(range, nin, nrrdBlind8BitRangeState); |
| 455 | } else { |
| 456 | range = nrrdRangeNewSet(nin, nrrdBlind8BitRangeState); |
| 457 | } |
| 458 | airMopAdd(mop, range, (airMopper)nrrdRangeNix, airMopAlways); |
| 459 | if (_nrrdApply1DSetUp(nout, nin, range, nlut, kindLut, typeOut, |
| 460 | rescale, AIR_FALSE0 /* multi */) |
| 461 | || _nrrdApply1DLutOrRegMap(nout, nin, range, nlut, AIR_FALSE0 /* ramps */, |
| 462 | rescale, AIR_FALSE0 /* multi */)) { |
| 463 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 464 | airMopError(mop); return 1; |
| 465 | } |
| 466 | airMopOkay(mop); |
| 467 | return 0; |
| 468 | } |
| 469 | |
| 470 | int |
| 471 | nrrdApplyMulti1DLut(Nrrd *nout, const Nrrd *nin, |
| 472 | const NrrdRange *_range, const Nrrd *nmlut, |
| 473 | int typeOut, int rescale) { |
| 474 | static const char me[]="nrrdApplyMulti1DLut"; |
| 475 | NrrdRange *range; |
| 476 | airArray *mop; |
| 477 | |
| 478 | if (!(nout && nmlut && nin)) { |
| 479 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 480 | return 1; |
| 481 | } |
| 482 | mop = airMopNew(); |
| 483 | if (_range) { |
| 484 | range = nrrdRangeCopy(_range); |
| 485 | nrrdRangeSafeSet(range, nin, nrrdBlind8BitRangeState); |
| 486 | } else { |
| 487 | range = nrrdRangeNewSet(nin, nrrdBlind8BitRangeState); |
| 488 | } |
| 489 | airMopAdd(mop, range, (airMopper)nrrdRangeNix, airMopAlways); |
| 490 | if (_nrrdApply1DSetUp(nout, nin, range, nmlut, kindLut, typeOut, |
| 491 | rescale, AIR_TRUE1 /* multi */) |
| 492 | || _nrrdApply1DLutOrRegMap(nout, nin, range, nmlut, |
| 493 | AIR_FALSE0 /* ramps */, |
| 494 | rescale, AIR_TRUE1 /* multi */)) { |
| 495 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 496 | airMopError(mop); return 1; |
| 497 | } |
| 498 | airMopOkay(mop); |
| 499 | return 0; |
| 500 | } |
| 501 | |
| 502 | /* |
| 503 | ******** nrrdApply1DRegMap |
| 504 | ** |
| 505 | ** A regular map has data points evenly spaced, with node-centering and |
| 506 | ** and linear interpolation assumed. As with luts, the axis min and |
| 507 | ** max determine the range of values that are mapped. This function |
| 508 | ** is used in nrrdHistoEq() and is the basis of the very popular "unu rmap". |
| 509 | ** |
| 510 | ** If the lut nrrd is 1-D, then the output is a scalar nrrd with the |
| 511 | ** same dimension as the input. If the lut nrrd is 2-D, then each |
| 512 | ** value in the input is mapped to a linear weighting of vectors |
| 513 | ** from the map; the vectors are the scanlines along axis 0. |
| 514 | ** |
| 515 | ** NB: this function makes NO provisions for non-existent input values. |
| 516 | ** There won't be any memory errors, but the results are undefined. |
| 517 | ** |
| 518 | ** This allows map length to be simply 1. |
| 519 | */ |
| 520 | int |
| 521 | nrrdApply1DRegMap(Nrrd *nout, const Nrrd *nin, |
| 522 | const NrrdRange *_range, const Nrrd *nmap, |
| 523 | int typeOut, int rescale) { |
| 524 | static const char me[]="nrrdApply1DRegMap"; |
| 525 | NrrdRange *range; |
| 526 | airArray *mop; |
| 527 | |
| 528 | if (!(nout && nmap && nin)) { |
| 529 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 530 | return 1; |
| 531 | } |
| 532 | mop = airMopNew(); |
| 533 | if (_range) { |
| 534 | range = nrrdRangeCopy(_range); |
| 535 | nrrdRangeSafeSet(range, nin, nrrdBlind8BitRangeState); |
| 536 | } else { |
| 537 | range = nrrdRangeNewSet(nin, nrrdBlind8BitRangeState); |
| 538 | } |
| 539 | airMopAdd(mop, range, (airMopper)nrrdRangeNix, airMopAlways); |
| 540 | if (_nrrdApply1DSetUp(nout, nin, range, nmap, kindRmap, typeOut, |
| 541 | rescale, AIR_FALSE0 /* multi */) |
| 542 | || _nrrdApply1DLutOrRegMap(nout, nin, range, nmap, AIR_TRUE1 /* ramps */, |
| 543 | rescale, AIR_FALSE0 /* multi */)) { |
| 544 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 545 | airMopError(mop); return 1; |
| 546 | } |
| 547 | airMopOkay(mop); |
| 548 | return 0; |
| 549 | } |
| 550 | |
| 551 | int |
| 552 | nrrdApplyMulti1DRegMap(Nrrd *nout, const Nrrd *nin, |
| 553 | const NrrdRange *_range, const Nrrd *nmmap, |
| 554 | int typeOut, int rescale) { |
| 555 | static const char me[]="nrrdApplyMulti1DRegMap"; |
| 556 | NrrdRange *range; |
| 557 | airArray *mop; |
| 558 | |
| 559 | if (!(nout && nmmap && nin)) { |
| 560 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 561 | return 1; |
| 562 | } |
| 563 | mop = airMopNew(); |
| 564 | if (_range) { |
| 565 | range = nrrdRangeCopy(_range); |
| 566 | nrrdRangeSafeSet(range, nin, nrrdBlind8BitRangeState); |
| 567 | } else { |
| 568 | range = nrrdRangeNewSet(nin, nrrdBlind8BitRangeState); |
| 569 | } |
| 570 | airMopAdd(mop, range, (airMopper)nrrdRangeNix, airMopAlways); |
| 571 | if (_nrrdApply1DSetUp(nout, nin, range, nmmap, kindRmap, typeOut, |
| 572 | rescale, AIR_TRUE1 /* multi */) |
| 573 | || _nrrdApply1DLutOrRegMap(nout, nin, range, nmmap, AIR_TRUE1 /* ramps */, |
| 574 | rescale, AIR_TRUE1 /* multi */)) { |
| 575 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 576 | airMopError(mop); return 1; |
| 577 | } |
| 578 | airMopOkay(mop); |
| 579 | return 0; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | ******** nrrd1DIrregMapCheck() |
| 584 | ** |
| 585 | ** return zero only for the valid forms of 1D irregular map. |
| 586 | ** imap must be 2D, both sizes >= 2, non-block-type, no non-existent |
| 587 | ** values in range. If the first point's position is non-existent, |
| 588 | ** than the first three points positions must be -inf, NaN, and +inf, |
| 589 | ** and none of the other points locations can be non-existent, and |
| 590 | ** they must increase monotonically. There must be at least two |
| 591 | ** points with existent positions. |
| 592 | */ |
| 593 | int |
| 594 | nrrd1DIrregMapCheck(const Nrrd *nmap) { |
| 595 | static const char me[]="nrrd1DIrregMapCheck"; |
| 596 | double (*mapLup)(const void *v, size_t I); |
| 597 | int i, entLen, mapLen, baseI; |
| 598 | size_t min[2], max[2]; |
| 599 | Nrrd *nrange; |
| 600 | |
| 601 | if (!nmap) { |
| 602 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 603 | return 1; |
| 604 | } |
| 605 | if (nrrdCheck(nmap)) { |
| 606 | biffAddf(NRRDnrrdBiffKey, "%s: ", me); |
| 607 | return 1; |
| 608 | } |
| 609 | if (nrrdTypeBlock == nmap->type) { |
| 610 | biffAddf(NRRDnrrdBiffKey, "%s: map is %s type, need scalar", |
| 611 | me, airEnumStr(nrrdType, nrrdTypeBlock)); |
| 612 | return 1; |
| 613 | } |
| 614 | if (2 != nmap->dim) { |
| 615 | biffAddf(NRRDnrrdBiffKey, "%s: map needs to have dimension 2, not %d", |
| 616 | me, nmap->dim); |
| 617 | return 1; |
| 618 | } |
| 619 | entLen = AIR_CAST(unsigned int,nmap->axis[0].size)((unsigned int)(nmap->axis[0].size)); |
| 620 | mapLen = AIR_CAST(unsigned int,nmap->axis[1].size)((unsigned int)(nmap->axis[1].size)); |
| 621 | if (!( entLen >= 2 && mapLen >= 2 )) { |
| 622 | biffAddf(NRRDnrrdBiffKey, "%s: both map's axes sizes should be >= 2 (not %d,%d)", |
| 623 | me, entLen, mapLen); |
| 624 | return 1; |
| 625 | } |
| 626 | min[0] = 1; max[0] = nmap->axis[0].size-1; |
| 627 | min[1] = 0; max[1] = nmap->axis[1].size-1; |
| 628 | if (nrrdCrop(nrange=nrrdNew(), nmap, min, max)) { |
| 629 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't crop to isolate range of map", me); |
| 630 | nrrdNuke(nrange); return 1; |
| 631 | } |
| 632 | if (nrrdHasNonExist(nrange)) { |
| 633 | biffAddf(NRRDnrrdBiffKey, "%s: map has non-existent values in its range", me); |
| 634 | nrrdNuke(nrange); return 1; |
| 635 | } |
| 636 | nrrdNuke(nrange); |
| 637 | mapLup = nrrdDLookup[nmap->type]; |
| 638 | if (AIR_EXISTS(mapLup(nmap->data, 0))(((int)(!((mapLup(nmap->data, 0)) - (mapLup(nmap->data, 0))))))) { |
| 639 | baseI = 0; |
| 640 | } else { |
| 641 | baseI = 3; |
| 642 | if (!( mapLen >= 5 )) { |
| 643 | biffAddf(NRRDnrrdBiffKey, "%s: length of map w/ non-existent locations must " |
| 644 | "be >= 5 (not %d)", me, mapLen); |
| 645 | return 1; |
| 646 | } |
| 647 | if (!( airFP_NEG_INF == airFPClass_d(mapLup(nmap->data, 0*entLen)) && |
| 648 | airFP_QNAN == airFPClass_d(mapLup(nmap->data, 1*entLen)) && |
| 649 | airFP_POS_INF == airFPClass_d(mapLup(nmap->data, 2*entLen)) )) { |
| 650 | biffAddf(NRRDnrrdBiffKey, "%s: 1st entry's position non-existent, but position " |
| 651 | "of 1st three entries (%g:%d,%g:%d,%g:%d) not " |
| 652 | "-inf, NaN, and +inf", me, |
| 653 | mapLup(nmap->data, 0*entLen), |
| 654 | airFPClass_d(mapLup(nmap->data, 0*entLen)), |
| 655 | mapLup(nmap->data, 1*entLen), |
| 656 | airFPClass_d(mapLup(nmap->data, 1*entLen)), |
| 657 | mapLup(nmap->data, 2*entLen), |
| 658 | airFPClass_d(mapLup(nmap->data, 2*entLen))); |
| 659 | return 1; |
| 660 | } |
| 661 | } |
| 662 | for (i=baseI; i<mapLen; i++) { |
| 663 | if (!AIR_EXISTS(mapLup(nmap->data, i*entLen))(((int)(!((mapLup(nmap->data, i*entLen)) - (mapLup(nmap-> data, i*entLen))))))) { |
| 664 | biffAddf(NRRDnrrdBiffKey, "%s: entry %d has non-existent position", me, i); |
| 665 | return 1; |
| 666 | } |
| 667 | } |
| 668 | for (i=baseI; i<mapLen-1; i++) { |
| 669 | if (!( mapLup(nmap->data, i*entLen) < mapLup(nmap->data, (i+1)*entLen) )) { |
| 670 | biffAddf(NRRDnrrdBiffKey, "%s: map entry %d pos (%g) not < entry %d pos (%g)", |
| 671 | me, i, mapLup(nmap->data, i*entLen), |
| 672 | i+1, mapLup(nmap->data, (i+1)*entLen)); |
| 673 | return 1; |
| 674 | } |
| 675 | } |
| 676 | return 0; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | ******** nrrd1DIrregAclCheck() |
| 681 | ** |
| 682 | ** returns zero only on valid accelerators for 1D irregular mappings |
| 683 | */ |
| 684 | int |
| 685 | nrrd1DIrregAclCheck(const Nrrd *nacl) { |
| 686 | static const char me[]="nrrd1DIrregAclCheck"; |
| 687 | |
| 688 | if (!nacl) { |
| 689 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 690 | return 1; |
| 691 | } |
| 692 | if (nrrdCheck(nacl)) { |
| 693 | biffAddf(NRRDnrrdBiffKey, "%s: ", me); |
| 694 | return 1; |
| 695 | } |
| 696 | if (nrrdTypeUShort != nacl->type) { |
| 697 | biffAddf(NRRDnrrdBiffKey, "%s: type should be %s, not %s", me, |
| 698 | airEnumStr(nrrdType, nrrdTypeUShort), |
| 699 | airEnumStr(nrrdType, nacl->type)); |
| 700 | return 1; |
| 701 | } |
| 702 | if (2 != nacl->dim) { |
| 703 | biffAddf(NRRDnrrdBiffKey, "%s: dimension should be 2, not %d", me, nacl->dim); |
| 704 | return 1; |
| 705 | } |
| 706 | if (!( nacl->axis[0].size == 2 && nacl->axis[1].size >= 2 )) { |
| 707 | char stmp1[AIR_STRLEN_SMALL(128+1)], stmp2[AIR_STRLEN_SMALL(128+1)]; |
| 708 | biffAddf(NRRDnrrdBiffKey, "%s: sizes (%s,%s) not (2,>=2)", me, |
| 709 | airSprintSize_t(stmp1, nacl->axis[0].size), |
| 710 | airSprintSize_t(stmp2, nacl->axis[1].size)); |
| 711 | return 1; |
| 712 | } |
| 713 | |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | ** _nrrd1DIrregMapDomain() |
| 719 | ** |
| 720 | ** ALLOCATES an array of doubles storing the existent control point |
| 721 | ** locations, and sets its length in *poslenP. If there are the three |
| 722 | ** points with non-existent locations, these are ignored. |
| 723 | ** |
| 724 | ** Assumes that nrrd1DIrregMapCheck has been called on "nmap". |
| 725 | */ |
| 726 | double * |
| 727 | _nrrd1DIrregMapDomain(int *posLenP, int *baseIP, const Nrrd *nmap) { |
| 728 | static const char me[]="_nrrd1DIrregMapDomain"; |
| 729 | int i, entLen, baseI, posLen; |
| 730 | double *pos, (*mapLup)(const void *v, size_t I); |
| 731 | |
| 732 | mapLup = nrrdDLookup[nmap->type]; |
| 733 | baseI = AIR_EXISTS(mapLup(nmap->data, 0))(((int)(!((mapLup(nmap->data, 0)) - (mapLup(nmap->data, 0)))))) ? 0 : 3; |
| 734 | if (baseIP) { |
| 735 | *baseIP = baseI; |
| 736 | } |
| 737 | entLen = AIR_CAST(unsigned int,nmap->axis[0].size)((unsigned int)(nmap->axis[0].size)); |
| 738 | posLen = AIR_CAST(unsigned int,nmap->axis[1].size)((unsigned int)(nmap->axis[1].size)) - baseI; |
| 739 | if (posLenP) { |
| 740 | *posLenP = posLen; |
| 741 | } |
| 742 | pos = (double*)malloc(posLen * sizeof(double)); |
| 743 | if (!pos) { |
| 744 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't allocate %d doubles\n", me, posLen); |
| 745 | return NULL((void*)0); |
| 746 | } |
| 747 | for (i=0; i<posLen; i++) { |
| 748 | pos[i] = mapLup(nmap->data, (baseI+i)*entLen); |
| 749 | } |
| 750 | return pos; |
| 751 | } |
| 752 | |
| 753 | /* |
| 754 | ** _nrrd1DIrregFindInterval() |
| 755 | ** |
| 756 | ** The hard part of doing 1D irregular mapping: given an array of |
| 757 | ** control point locations, and a value, find which interval the value |
| 758 | ** lies in. The lowest and highest possible indices are given in |
| 759 | ** "loI" and "hiI". Results are undefined if these do not in fact |
| 760 | ** bound the location of correct interval, or if loI > hiI, or if the |
| 761 | ** query positon "p" is not in the domain vector "pos". Intervals are |
| 762 | ** identified by the integral index of the LOWER of the two control |
| 763 | ** points spanning the interval. |
| 764 | ** |
| 765 | ** This imposes the same structure of half-open intervals that |
| 766 | ** is done by airIndex(). That is, a value p is in interval i |
| 767 | ** if pos[i] <= p < pos[i+1] for all but the last interval, and |
| 768 | ** pos[i] <= p <= pos[i+1] for the last interval (in which case |
| 769 | ** i == hiI) |
| 770 | */ |
| 771 | int |
| 772 | _nrrd1DIrregFindInterval(const double *pos, double p, int loI, int hiI) { |
| 773 | int midI; |
| 774 | |
| 775 | /* |
| 776 | fprintf(stderr, "##%s(%g): hi: %d/%g-%g | %d/%g-%g\n", |
| 777 | "_nrrd1DIrregFindInterval", p, |
| 778 | loI, pos[loI], pos[loI+1], |
| 779 | hiI, pos[hiI], pos[hiI+1]); |
| 780 | */ |
| 781 | while (loI < hiI) { |
| 782 | midI = (loI + hiI)/2; |
| 783 | if ( pos[midI] <= p && ((midI < hiI && p < pos[midI+1]) || |
| 784 | (midI == hiI && p <= pos[midI+1])) ) { |
| 785 | /* p is between (pos[midI],pos[midI+1]): we're done */ |
| 786 | loI = hiI = midI; |
| 787 | } else if (pos[midI] > p) { |
| 788 | /* p is below interval midI: midI-1 is valid upper bound */ |
| 789 | hiI = midI-1; |
| 790 | } else { |
| 791 | /* p is above interval midI: midI+1 is valid lower bound */ |
| 792 | loI = midI+1; |
| 793 | } |
| 794 | /* |
| 795 | fprintf(stderr, "##%s(%g): %d/%g-%g | %d/%g-%g | %d/%g-%g\n", |
| 796 | "_nrrd1DIrregFindInterval", p, |
| 797 | loI, pos[loI], pos[loI+1], |
| 798 | midI, pos[midI], pos[midI+1], |
| 799 | hiI, pos[hiI], pos[hiI+1]); |
| 800 | */ |
| 801 | } |
| 802 | return loI; |
| 803 | } |
| 804 | |
| 805 | /* |
| 806 | ******** nrrd1DIrregAclGenerate() |
| 807 | ** |
| 808 | ** Generates the "acl" that is used to speed up the action of |
| 809 | ** nrrdApply1DIrregMap(). Basically, the domain of the map |
| 810 | ** is quantized into "acllen" bins, and for each bin, the |
| 811 | ** lowest and highest possible map interval is stored. This |
| 812 | ** either obviates or speeds up the task of finding which |
| 813 | ** interval contains a given value. |
| 814 | ** |
| 815 | ** Assumes that nrrd1DIrregMapCheck has been called on "nmap". |
| 816 | */ |
| 817 | int |
| 818 | nrrd1DIrregAclGenerate(Nrrd *nacl, const Nrrd *nmap, size_t aclLen) { |
| 819 | static const char me[]="nrrd1DIrregAclGenerate"; |
| 820 | int posLen; |
| 821 | unsigned int ii; |
| 822 | unsigned short *acl; |
| 823 | double lo, hi, min, max, *pos; |
| 824 | |
| 825 | if (!(nacl && nmap)) { |
| 826 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 827 | return 1; |
| 828 | } |
| 829 | if (!(aclLen >= 2)) { |
| 830 | char stmp[AIR_STRLEN_SMALL(128+1)]; |
| 831 | biffAddf(NRRDnrrdBiffKey, "%s: given acl length (%s) is too small", me, |
| 832 | airSprintSize_t(stmp, aclLen)); |
| 833 | return 1; |
| 834 | } |
| 835 | if (nrrdMaybeAlloc_va(nacl, nrrdTypeUShort, 2, |
| 836 | AIR_CAST(size_t, 2)((size_t)(2)), AIR_CAST(size_t, aclLen)((size_t)(aclLen)))) { |
| 837 | biffAddf(NRRDnrrdBiffKey, "%s: ", me); |
| 838 | return 1; |
| 839 | } |
| 840 | acl = (unsigned short *)nacl->data; |
| 841 | pos = _nrrd1DIrregMapDomain(&posLen, NULL((void*)0), nmap); |
| 842 | if (!pos) { |
| 843 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't determine domain", me); |
| 844 | return 1; |
| 845 | } |
| 846 | nacl->axis[1].min = min = pos[0]; |
| 847 | nacl->axis[1].max = max = pos[posLen-1]; |
| 848 | for (ii=0; ii<=aclLen-1; ii++) { |
| 849 | lo = AIR_AFFINE(0, ii, aclLen, min, max)( ((double)(max)-(min))*((double)(ii)-(0)) / ((double)(aclLen )-(0)) + (min)); |
| 850 | hi = AIR_AFFINE(0, ii+1, aclLen, min, max)( ((double)(max)-(min))*((double)(ii+1)-(0)) / ((double)(aclLen )-(0)) + (min)); |
| 851 | acl[0 + 2*ii] = _nrrd1DIrregFindInterval(pos, lo, 0, posLen-2); |
| 852 | acl[1 + 2*ii] = _nrrd1DIrregFindInterval(pos, hi, 0, posLen-2); |
| 853 | } |
| 854 | free(pos); |
| 855 | |
| 856 | return 0; |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | ******** nrrdApply1DIrregMap() |
| 861 | ** |
| 862 | ** Linear interpolation between irregularly spaced control points. |
| 863 | ** Obviously, the location of the control point has to be given |
| 864 | ** explicitly. The map nrrd must have dimension 2, and each |
| 865 | ** control point is represented by a scanline along axis 0. The |
| 866 | ** first value is the position of the control point, and the remaining |
| 867 | ** value(s) are linearly weighted according to the position of the |
| 868 | ** input value among the control point locations. |
| 869 | ** |
| 870 | ** To allow "coloring" of non-existent values -inf, NaN, and +inf, if |
| 871 | ** the very first value of the map (the location of the first control |
| 872 | ** point) is non-existent, then the first three control point locations |
| 873 | ** must be -inf, NaN, and +inf, in that order, and the information |
| 874 | ** about these points will be used for corresponding input values. |
| 875 | ** Doing this makes everything slower, however, because airFPClass_f() |
| 876 | ** is called on every single value. |
| 877 | ** |
| 878 | ** This assumes that nrrd1DIrregMapCheck has been called on "nmap", |
| 879 | ** and that nrrd1DIrregAclCheck has been called on "nacl" (if it is |
| 880 | ** non-NULL). |
| 881 | */ |
| 882 | int |
| 883 | nrrdApply1DIrregMap(Nrrd *nout, const Nrrd *nin, const NrrdRange *_range, |
| 884 | const Nrrd *nmap, const Nrrd *nacl, |
| 885 | int typeOut, int rescale) { |
| 886 | static const char me[]="nrrdApply1DIrregMap"; |
| 887 | size_t N, I; |
| 888 | int i, *acl, entLen, posLen, aclLen, mapIdx, aclIdx, |
| 889 | entSize, colSize, inSize, lo, hi, baseI; |
| 890 | double val, *pos, domMin, domMax, mapIdxFrac, |
| 891 | (*mapLup)(const void *v, size_t I), |
| 892 | (*inLoad)(const void *v), (*outInsert)(void *v, size_t I, double d); |
| 893 | char *inData, *outData, *entData0, *entData1; |
| 894 | NrrdRange *range; |
| 895 | airArray *mop; |
| 896 | |
| 897 | /* |
| 898 | fprintf(stderr, "!%s: rescale = %d\n", me, rescale); |
| 899 | */ |
| 900 | if (!(nout && nmap && nin)) { |
| 901 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 902 | return 1; |
| 903 | } |
| 904 | mop = airMopNew(); |
| 905 | if (_range) { |
| 906 | range = nrrdRangeCopy(_range); |
| 907 | nrrdRangeSafeSet(range, nin, nrrdBlind8BitRangeState); |
| 908 | } else { |
| 909 | range = nrrdRangeNewSet(nin, nrrdBlind8BitRangeState); |
| 910 | } |
| 911 | airMopAdd(mop, range, (airMopper)nrrdRangeNix, airMopAlways); |
| 912 | if (_nrrdApply1DSetUp(nout, nin, range, nmap, |
| 913 | kindImap, typeOut, rescale, AIR_FALSE0 /* multi */)) { |
| 914 | biffAddf(NRRDnrrdBiffKey, "%s:", me); |
| 915 | airMopError(mop); return 1; |
| 916 | } |
| 917 | if (nacl && nrrd1DIrregAclCheck(nacl)) { |
| 918 | biffAddf(NRRDnrrdBiffKey, "%s: given acl isn't valid", me); |
| 919 | airMopError(mop); return 1; |
| 920 | } |
| 921 | |
| 922 | if (nacl) { |
| 923 | acl = (int *)nacl->data; |
| 924 | aclLen = AIR_CAST(unsigned int,nacl->axis[1].size)((unsigned int)(nacl->axis[1].size)); |
| 925 | } else { |
| 926 | acl = NULL((void*)0); |
| 927 | aclLen = 0; |
| 928 | } |
| 929 | pos = _nrrd1DIrregMapDomain(&posLen, &baseI, nmap); |
| 930 | if (!pos) { |
| 931 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't determine domain", me); |
| 932 | airMopError(mop); return 1; |
| 933 | } |
| 934 | airMopAdd(mop, pos, airFree, airMopAlways); |
| 935 | mapLup = nrrdDLookup[nmap->type]; |
| 936 | |
| 937 | inData = (char *)nin->data; |
| 938 | inLoad = nrrdDLoad[nin->type]; |
| 939 | inSize = AIR_CAST(unsigned int,nrrdElementSize(nin))((unsigned int)(nrrdElementSize(nin))); |
| 940 | mapLup = nrrdDLookup[nmap->type]; |
| 941 | entLen = AIR_CAST(unsigned int,nmap->axis[0].size)((unsigned int)(nmap->axis[0].size)); /* entLen is really 1 + entry length */ |
| 942 | entSize = entLen*AIR_CAST(unsigned int,nrrdElementSize(nmap))((unsigned int)(nrrdElementSize(nmap))); |
| 943 | colSize = (entLen-1)*AIR_CAST(unsigned int,nrrdTypeSize[typeOut])((unsigned int)(nrrdTypeSize[typeOut])); |
| 944 | outData = (char *)nout->data; |
| 945 | outInsert = nrrdDInsert[nout->type]; |
| 946 | domMin = pos[0]; |
| 947 | domMax = pos[posLen-1]; |
| 948 | /* |
| 949 | fprintf(stderr, "!%s: domMin, domMax = %g, %g\n", me, domMin, domMax); |
| 950 | */ |
| 951 | |
| 952 | N = nrrdElementNumber(nin); |
| 953 | for (I=0; |
| 954 | I<N; |
| 955 | I++, inData += inSize, outData += colSize) { |
| 956 | val = inLoad(inData); |
| 957 | /* |
| 958 | fprintf(stderr, "!%s: (%d) val = % 31.15f\n", me, (int)I, val); |
| 959 | */ |
| 960 | if (!AIR_EXISTS(val)(((int)(!((val) - (val)))))) { |
| 961 | /* got a non-existent value */ |
| 962 | if (baseI) { |
| 963 | /* and we know how to deal with them */ |
| 964 | switch (airFPClass_d(val)) { |
| 965 | case airFP_NEG_INF: |
| 966 | mapIdx = 0; |
| 967 | break; |
| 968 | case airFP_SNAN: |
| 969 | case airFP_QNAN: |
| 970 | mapIdx = 1; |
| 971 | break; |
| 972 | case airFP_POS_INF: |
| 973 | mapIdx = 2; |
| 974 | break; |
| 975 | default: |
| 976 | mapIdx = 0; |
Value stored to 'mapIdx' is never read | |
| 977 | fprintf(stderr__stderrp, "%s: PANIC: non-existent value/class %g/%d " |
| 978 | "not handled\n", |
| 979 | me, val, airFPClass_d(val)); |
| 980 | exit(1); |
| 981 | } |
| 982 | entData0 = (char*)(nmap->data) + mapIdx*entSize; |
| 983 | for (i=1; i<entLen; i++) { |
| 984 | outInsert(outData, i-1, mapLup(entData0, i)); |
| 985 | } |
| 986 | continue; /* we're done! (with this value) */ |
| 987 | } else { |
| 988 | /* we don't know how to properly deal with this non-existent value: |
| 989 | we use the first entry, and then fall through to code below */ |
| 990 | mapIdx = 0; |
| 991 | mapIdxFrac = 0.0; |
| 992 | } |
| 993 | } else { |
| 994 | /* we have an existent value */ |
| 995 | if (rescale) { |
| 996 | val = (range->min != range->max |
| 997 | ? AIR_AFFINE(range->min, val, range->max, domMin, domMax)( ((double)(domMax)-(domMin))*((double)(val)-(range->min)) / ((double)(range->max)-(range->min)) + (domMin)) |
| 998 | : domMin); |
| 999 | } |
| 1000 | val = AIR_CLAMP(domMin, val, domMax)((val) < (domMin) ? (domMin) : ((val) > (domMax) ? (domMax ) : (val))); |
| 1001 | if (acl) { |
| 1002 | aclIdx = airIndex(domMin, val, domMax, aclLen); |
| 1003 | lo = acl[0 + 2*aclIdx]; |
| 1004 | hi = acl[1 + 2*aclIdx]; |
| 1005 | } else { |
| 1006 | lo = 0; |
| 1007 | hi = posLen-2; |
| 1008 | } |
| 1009 | if (lo < hi) { |
| 1010 | mapIdx = _nrrd1DIrregFindInterval(pos, val, lo, hi); |
| 1011 | } else { |
| 1012 | /* acl did its job ==> lo == hi */ |
| 1013 | mapIdx = lo; |
| 1014 | } |
| 1015 | /* |
| 1016 | fprintf(stderr, "!%s: --> val = %g; lo,hi = %d,%d, mapIdx = %d\n", |
| 1017 | me, val, lo, hi, mapIdx); |
| 1018 | */ |
| 1019 | } |
| 1020 | mapIdxFrac = AIR_AFFINE(pos[mapIdx], val, pos[mapIdx+1], 0.0, 1.0)( ((double)(1.0)-(0.0))*((double)(val)-(pos[mapIdx])) / ((double )(pos[mapIdx+1])-(pos[mapIdx])) + (0.0)); |
| 1021 | /* |
| 1022 | fprintf(stderr, "!%s: mapIdxFrac = %g\n", me, mapIdxFrac); |
| 1023 | */ |
| 1024 | entData0 = (char*)(nmap->data) + (baseI+mapIdx)*entSize; |
| 1025 | entData1 = (char*)(nmap->data) + (baseI+mapIdx+1)*entSize; |
| 1026 | for (i=1; i<entLen; i++) { |
| 1027 | val = ((1-mapIdxFrac)*mapLup(entData0, i) + |
| 1028 | mapIdxFrac*mapLup(entData1, i)); |
| 1029 | /* |
| 1030 | fprintf(stderr, "!%s: %g * %g + %g * %g = %g\n", me, |
| 1031 | 1-mapIdxFrac, mapLup(entData0, i), |
| 1032 | mapIdxFrac, mapLup(entData1, i), val); |
| 1033 | */ |
| 1034 | outInsert(outData, i-1, val); |
| 1035 | } |
| 1036 | } |
| 1037 | airMopOkay(mop); |
| 1038 | return 0; |
| 1039 | } |
| 1040 | |
| 1041 | /* |
| 1042 | ******** nrrdApply1DSubstitution |
| 1043 | ** |
| 1044 | ** A "subst" is a substitution table, i.e. a list of pairs that |
| 1045 | ** describes what values should be substituted with what (substitution |
| 1046 | ** rules). So, nsubst must be a scalar 2xN array. The output is a |
| 1047 | ** copy of the input with values substituted using this table. |
| 1048 | ** |
| 1049 | ** Unlike with lookup tables and maps (irregular and regular), we |
| 1050 | ** aren't at liberty to change the dimensionality of the data (can't |
| 1051 | ** substitute a grayscale with a color). The ability to apply |
| 1052 | ** substitutions to non-scalar data will be in a different function. |
| 1053 | ** Also unlike lookup tables and maps, the output type is the SAME as |
| 1054 | ** the input type; the output does NOT inherit the type of the |
| 1055 | ** substitution |
| 1056 | */ |
| 1057 | int |
| 1058 | nrrdApply1DSubstitution(Nrrd *nout, const Nrrd *nin, const Nrrd *_nsubst) { |
| 1059 | static const char me[]="nrrdApply1DSubstitution"; |
| 1060 | double (*lup)(const void *, size_t); |
| 1061 | double (*ins)(void *, size_t, double); |
| 1062 | Nrrd *nsubst; |
| 1063 | double val, *subst; |
| 1064 | size_t ii, jj, num, asize0, asize1; |
| 1065 | int changed; |
| 1066 | airArray *mop; |
| 1067 | |
| 1068 | if (!(nout && _nsubst && nin)) { |
| 1069 | biffAddf(NRRDnrrdBiffKey, "%s: got NULL pointer", me); |
| 1070 | return 1; |
| 1071 | } |
| 1072 | if (nrrdTypeBlock == nin->type || nrrdTypeBlock == _nsubst->type) { |
| 1073 | biffAddf(NRRDnrrdBiffKey, "%s: input or substitution type is %s, need scalar", |
| 1074 | me, airEnumStr(nrrdType, nrrdTypeBlock)); |
| 1075 | return 1; |
| 1076 | } |
| 1077 | if (2 != _nsubst->dim) { |
| 1078 | biffAddf(NRRDnrrdBiffKey, "%s: substitution table has to be 2-D, not %d-D", |
| 1079 | me, _nsubst->dim); |
| 1080 | return 1; |
| 1081 | } |
| 1082 | /* nrrdAxisInfoGet_va(_nsubst, nrrdAxisInfoSize, &asize0, &asize1); */ |
| 1083 | asize0 = _nsubst->axis[0].size; |
| 1084 | asize1 = _nsubst->axis[1].size; |
| 1085 | if (2 != asize0) { |
| 1086 | biffAddf(NRRDnrrdBiffKey, "%s: substitution table has to be 2xN, not %uxN", |
| 1087 | me, AIR_CAST(unsigned int, asize0)((unsigned int)(asize0))); |
| 1088 | return 1; |
| 1089 | } |
| 1090 | if (nout != nin) { |
| 1091 | if (nrrdCopy(nout, nin)) { |
| 1092 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't initialize by copy to output", me); |
| 1093 | return 1; |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | mop = airMopNew(); |
| 1098 | nsubst = nrrdNew(); |
| 1099 | airMopAdd(mop, nsubst, (airMopper)nrrdNuke, airMopAlways); |
| 1100 | if (nrrdConvert(nsubst, _nsubst, nrrdTypeDouble)) { |
| 1101 | biffAddf(NRRDnrrdBiffKey, "%s: couldn't create double copy of substitution table", |
| 1102 | me); |
| 1103 | airMopError(mop); return 1; |
| 1104 | } |
| 1105 | lup = nrrdDLookup[nout->type]; |
| 1106 | ins = nrrdDInsert[nout->type]; |
| 1107 | subst = (double *)nsubst->data; |
| 1108 | num = nrrdElementNumber(nout); |
| 1109 | for (ii=0; ii<num; ii++) { |
| 1110 | val = lup(nout->data, ii); |
| 1111 | changed = AIR_FALSE0; |
| 1112 | for (jj=0; jj<asize1; jj++) { |
| 1113 | if (val == subst[jj*2+0]) { |
| 1114 | val = subst[jj*2+1]; |
| 1115 | changed = AIR_TRUE1; |
| 1116 | } |
| 1117 | } |
| 1118 | if (changed) { |
| 1119 | ins(nout->data, ii, val); |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | airMopOkay(mop); |
| 1124 | return 0; |
| 1125 | } |